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ABSTRACT

In Quantum theory there are several points of departure from classical theory for describ-

ing nature. The most well known non-classical concept about quantum mechanics is the

uncertainty principle. Uncertainty relation and related randomness are associated with

the probabilistic structure of quantum theory, which is not like classical probability theory

where any kind of randomness arises due to subjective ignorance. To reduce quantum

theory to classical probability theory with some additional variables is the program of so

called hidden variable theory. There are three no-go theorems arising from quantum corre-

lations. No local-realist model pertaining to spatial correlation, no non-contextual model

and no macro-realist model for quantum theory pertaining to temporal correlation. These

foundational studies have many information theoretic applications such as quantum cryp-

tography, factorisation problem, computation, genuine random number generation etc.

This thesis contains some foundational issues and applications as well. Generalised

form of Heisenberg’s uncertainty relation is turned into witness of purity or mixedness

of quantum system by choosing observables suitably. A new uncertainty relation in the

presence of quantum memory is derived which is optimal in the context of experimental

verification. Then problem of sharing of nonlocality by multiple observers is addressed.

Violation of macrorealism (MR) is a promising ground for studying quantum-classical tran-

sition. We show how to obtain optimal violation of Leggett-Garg inequality and a necessary

condition of MR, dubbed Wigner form of LGI is proposed. Quantum-classical transition is

addressed considering coarse-grained measurements in cases of large spin systems in uni-

form magnetic field and simple harmonic oscillator with increasing mass. Finally LGI is

linked with device independent randomness generation by deriving it from a new set of

assumptions, no signalling in time and predictability.
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CHAPTER 1

INTRODUCTION

Birth of quantum theory is marked by the year 1900 due to Max Planck. After then it got

huge success in explaining newly explored natural phenomena which were not possible

to comprehend from the then existing theories (classical physics). Apart from gravity, it

provides completely correct description for all natural phenomena in microscopic domain.

Various counter classical quantum phenomena were discovered and analysed throughout

the last century and till now exploration is going on. Conceptual revolution always facil-

itates technological revolution. It is indeed with the quantum mechanical understanding

of the structure and properties of matter that physicists and engineers were able to invent

and develop transistor and laser.

The most well known non-classical concept about quantum mechanics is uncertainty prin-

ciple of Heisenberg [1]. Uncertainty relations and related randomness are associated with

the probabilistic structure of quantum theory, which is not like classical probability theory

where any kind of randomness arises due to subjective ignorance. To reduce quantum

theory to classical probability theory with some additional variables is the program of so

called hidden variable theory(HVT). Quantum entanglement which lies at the heart of EPR

paradox indicates one of the famous conflicts between classical and quantum description

of nature. Bell’s no-go theorem asserts that one cannot construct a local realist model

for quantum theory[2]. Another no-go theorem is known as contextuality [3], which

states that non-contextual hidden variable model cannot explain some temporal corre-

lations emerging from sequential compatible quantum measurements. The latest no-go
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theorem in this direction is due to Leggett-Garg[4], which imply macro-realist theories,

compatible with classical physics, are untenable with quantum theory.

Our every day experience with macroscopic world does not manifest quantum features.

Quantum mechanics allow superposition of states and well describe micro-world phenom-

ena. But it leads to Schrödinger cat paradox when macro-world comes into the picture.

Formalism of quantum measurement requires classical apparatus which is to be entangled

with quantum system to be measured leads to notorious measurement problem in quan-

tum mechanics. Quantum superposition of macroscopic system inevitably arises through

such description, which is not observed. There are three major approaches to this prob-

lem. One is objective collapse models[5, 6] which put a limit beyond which quantum

superposition disappears. Decoherence program[7] considers interaction between system

and environment for resolving this issue. Third approach limits power of observability for

describing emergence of classicality out of quantum features. Based on the idea of Peres

[8], Kofler and Brukner established the approach of emergence of classicality through

coarse-grained measurements. First two approaches do not yield fully satisfactory answer

to the already settled experimental facts and third approach does not provide a sharp

boundary of quantum-classical transition. Hence, quantum to classical transition is one of

the most fundamental and interesting area of study not only due to its prior importance

for the future development towards macroscopic superposition and entanglement but also

necessary for a consistent description of nature.

These foundational studies have many applications as several no-go results lead to various

quantum information processing tasks outperforming their classical counter parts such as

quantum cryptography [9, 10, 11], search algorithm, factorisation problem, computation,

genuine random number generation [12, 13]. Therefore it is important to identify proper

resources for the information processing tasks. Recently non-locality has been proven to be

resource for device independent tasks. Contextuality is linked with computational tasks.

Outline of the thesis: This thesis contains some foundational issues and applications as

well. New application of one of generalised forms of Hiesenberg’s uncertainty relation is

found. A new uncertainty relation in the presence of quantum memory is derived. How

non-local correlation can be shared between multiple observers is addressed. At the later

part, this thesis mainly deals with issues of macro-realism. How the no-go theorem in this

case differs from that of scenario of local-realism is emphasised. Quantum-classical tran-

sition is addressed considering coarse-grained measurement in greater detail. A novel for-

malism is introduced using simple harmonic oscillator, which is well described in classical
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and quantum theory as well, to explore macroscopic superposition. Finally Leggett-Garg

inequality, a necessary condition for macro-realism, is utilised in the context of device in-

dependent randomness generation.

In the remaining part of the introductory chapter, the mathematical framework which is

relevant for comprehending different results in later chapters is discussed. It begins with

Postulates of quantum theory. Then mathematical representation of single and bipartite

quantum systems ranging from simplest two level system to system of any dimension are

discussed. Derivation of generalised uncertainty relation and entropic uncertainty relation

are discussed briefly. Three no-go theorem and some issues regarding these are discussed.

We end with briefly stating ontological model framework for the operational quantum the-

ory.

In Chapter-2 we demonstrate an application of Robertson-Schrödinger generalized uncer-

tainty relation(GUR) in the context of detecting mixedness or purity of a quantum sys-

tem. Advantages of purity detection scheme using GUR over state tomography approach

in terms of number of measurements is addressed. Then a new uncertainty relation is

proposed in the presence of quantum memory. Lower bound of this uncertainty relation

is optimal in the experimental conditions. We also identify the proper resource dubbed

extractable classical information responsible for the reduction of lower bound in this sce-

nario.

In Chapter-3 we provide a brief discussion on the quantum theory of measurement and

positive operator valued measure. Then using this formalism we show that unsharp ob-

servables characterized by a single unsharpness parameter saturate the optimal pointer

condition with respect to the trade-off between disturbance and information gain. Then

we consider the problem of sharing of nonlocality by multiple observers. Specifically we

prove nonlocality pertaining to a single member of an entangled pair of particles can be

shared with two independent observers who sequentially perform measurements on the

other member of the entangled pair but not more than two.

In Chapter-4 we discuss macrorealism and its violation probed through violation of Leggett-

Garg inequality. We show how to obtain optimal violation of LGI involving dichotomic

measurements for arbitrary spin system and then how classicality emerges with unsharp

measurements. Then we derive a new necessary condition of macrorealism dubbed Wigner

form of LGI and show its robustness with compare to conventional LGI with respect to

unsharp measurement. We also consider another necessary condition of MR, namely no-

signalling in time(NSIT) and demonstrate its maximal robustness among other necessary
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1.1 A brief introduction to quantum mechanics

conditions of MR with respect to unsharp measurement.

In Chapter-5 we discuss Quantum-classical transition considering two type of systems.

Firstly we consider arbitrary spin system in uniform magnetic field. Invoking general kind

of coarse-grained measurement i.e., measurement with varying degree of coarseness in

conjunction with fuzziness we discuss issues of quantum-classical transition. Then we con-

sider oscillator system with dichotomic position measurement and investigated quantum-

classical transition with increasing mass.

In Chapter-6 we propose an important application of violation of LGI in the context of

certification of randomness generation. This is done by deriving LGI from different set of

assumptions: no signalling in time and predictability. This derivation of LGI allows us to

conclude that in a situation, when NSIT is satisfied, the violation of LGI imply the presence

of certifiable randomness.

1.1 A BRIEF INTRODUCTION TO QUANTUM MECHANICS

To present preliminary ideas the postulates of quantum mechanics are listed below.

1.1.1 POSTULATES OF QUANTUM MECHANICS

The 1st postulates deals with suitable space where quantum phenomena occur at the level

of theory

P1. State space of system: Every quantum mechanical system S, is associated with a

separable Hilbert space HS over complex field, known as the state space of the system.

The dimension of the associated Hilbert space depends on the multiplicity of degree of

freedom being considered for the system.

This association of state space to a particular system is not given by quantum mechanics

and rather a different problem of physics. Through some reasonable assumptions a partic-

ular Hilbert space is chosen for a particular system of interest. For example if only the spin

degree of freedom of a spin–1/2 particle(two level system also called a qubit) is consid-

ered, the corresponding Hilbert space is C2, a two dimensional complex Hilbert space. An

arbitrary qubit state can be written as |ψ〉 = a|0〉+ b|1〉, where |0〉 and |1〉 are orthonormal

basis states for C2 and |a|2 + |b|2 = 1. The Hilbert space associated to a simple harmonic

oscillator is the infinite dimensional complex separable Hilbert space L2(−∞,+∞) of all

complex valued functions. Each of which is square integrable over the entire real line. The
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1.1 A brief introduction to quantum mechanics

system S is completely described by its density operator ρ which is a positive semidefinite

trace class operator acting on the state space HS of the system. Collection of all density

operators T(HS), acting on the state space HS, forms a convex compact subset of set of

all bounded hermitian operators acting on HS. The density operators corresponding to

the extreme point of the convex set T(HS) are called pure state, otherwise they are called

mixed state. Mathematically pure states are characterized as Tr(ρ2) = 1 and the mixed

states satisfy Tr(ρ2) < 1. The set of pure density operators are isomorphic to the projective

Hilbert space P(HS) and in such case density operators have one-one correspondence with

the ray vectors |ψ〉 ∈ HS, as considered in normal text books.

P2. Observable: Observables, which are measurable quantities like position, momen-

tum, energy, spin are associated with self adjoint operators on the Hilbert space HS.

As observables are self adjoint operators, it have real eigenvalues which appear as mea-

surement outcomes. Any such operator A has spectral representation A =
∑

i aiPi. Where

ais are eigenvalues and Pis are associated projectors.

P3. Dynamics: The evolution of a closed quantum system is described by a unitary

transformation. That is, the state ρt1 of the system at time t1 is transformed to the state

ρt2 of the system at later time t2 by a unitary operator U which depends only on time

interval, i.e.,

ρt1 → ρt2 = U(t1, t2)ρt1U
†(t1, t2) (1.1)

A more refined version of this postulate can be given which describes the evolution of a

quantum system in continuous time. Considering the system is in the pure state |ψ〉, the

time evolution of the state of a closed quantum system can also be described by the well

known Schrödinger equation which reads as:

i~
d|ψ〉
dt

= H|ψ〉, (1.2)

where H is a Hermitian operator known as the Hamiltonian of the closed system. Hamil-

tonian picture of dynamics and unitary operator picture are connected by their relation,

U(t1, t2) = exp−iH(t2−t1)/} . (1.3)

5 c©Shiladitya Mal



1.1 A brief introduction to quantum mechanics

P4. Measurement: Quantum measurements are described by a collection {Mk} of pos-

itive operators. These operators acting on the state space of the system being measured.

The index k denotes measurement outcomes that may occur in the experiment. The

measurement operators satisfy the completeness relation

∑
k

M †
kMk = 1,

where 1 denotes the identity operator acting on HS.

If the state of the quantum system is ρ immediately before the measurement then the

probability that result k occurs is given by generalized Born rule, i.e.,

p(k) = Tr(M †
kMkρ), (1.4)

and the state of the system ρk, conditioned that the result k is obtained in the measure-

ment, is given by

ρ→ ρk =
MkρM

†
k

Tr(M †
kMkρ)

. (1.5)

Evolution of the quantum state after the measurement process can not be described by

a continuous unitary dynamics in orthodox interpretation. The state transformed into

another state conditioned on the result of measurement outcome. This process is called

measurement induced collapse.

Projective measurement: A special class of measurement frequently used in quantum

theory is projective measurements. A projective measurement is described by an observ-

able, R, a Hermitian operator on the state space of the system being observed. Spectral

decomposition of the observable is written as,

R =
∑
r

rPr, (1.6)

where Pr is the projector onto the eigenspace of R having eigenvalue r and PrPq = δr,qPr.

Projective measurements are repeatable in the sense that if a projective measurement is

performed once, and outcome m is obtained then repeating the same measurement gives

6 c©Shiladitya Mal



1.1 A brief introduction to quantum mechanics

the outcome m again not changing the state further.

The average value of the observable for the state |ψ〉 is 〈ψ|R|ψ〉. Standard deviation asso-

ciated to observation of R is ∆(R) = 〈R2〉 − 〈R〉2. This formulation of measurement and

standard deviation gives rise to Heisenberg uncertainty principle, which is discussed later.

Positive operator valued measure: In reality not every measurements are repeat-

able. A general kind of measurement known as positive operator valued measure or

POVM. Suppose a measurement described by measurement operator Mm is performed

on a quantum system |ψ〉. Then the probability of outcome is given by following Born’s

rule, p(m) = 〈ψ|M †
mMm|ψ〉. Let us define Em = M †

mMm. The set of positive operators

Em satisfying normalisation condition
∑

mMm = I are known as POVM elements. The

corresponding state update rule is given by generalised Lüders transformation

ρ→ MmρM
†
m

Tr[MmρM
†
m]
. (1.7)

Projective measurement is an example of POVM, where POVM elements are projectors sat-

isfying Em = P †mPm = Pm.

The following postulate describes the state space of a composite system consisting of

several subsystems.

P5. Composite system: The state space of a composite physical system is the tensor

product of the state spaces of the component physical systems Si, i.e.,

H1,2,...,n = H1 ⊗H2 ⊗ ...⊗Hn.

If an composite state ρ1,2,...,n ∈ T(H1 ⊗ H2 ⊗ ... ⊗ Hn) can be expressed as ρ1,2,...,n =

ρ1 ⊗ ρ2 ⊗ ...⊗ ρn, with ρi ∈ T(Hi), then the state is called product state. States which are

convex combination of product states are called separable state ρsep1,2,...,n =
∑

i piρ
i
1 ⊗ ρi2 ⊗

... ⊗ ρin. Let us denote the collection of all separable states as Sep(H1 ⊗H2 ⊗ ... ⊗Hn) ⊂
T(H1 ⊗H2 ⊗ ... ⊗Hn). States belonging in T(H1 ⊗H2 ⊗ ... ⊗Hn), but not belonging in

Sep(H1 ⊗H2 ⊗ ... ⊗Hn) are called entangled, i.e., ρent1,2,...,n ∈ T(H1 ⊗H2 ⊗ ... ⊗Hn), but

ρent1,2,...,n /∈ Sep(H1 ⊗H2 ⊗ ...⊗Hn).
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1.1 A brief introduction to quantum mechanics

1.1.2 SIMPLEST QUANTUM SYSTEM: QUBIT

Qubits or quantum bits are the simplest quantum system with minimal dimension. They

provide a mathematically simple framework in which the basic concepts of quantum physics

can be easily understood. Qubits are 2-level quantum system and the Hilbert space asso-

ciated with a system is C2. A pure state of an 2-level quantum system is a vector |ψ〉 ∈ C2

which is normalised, i. e., |〈ψ|ψ〉|2 = 1. Thus |ψ〉 as a unit vector. Since the global phase

factor eiφ (φ ∈ R) is insignificant, vectors |ψ〉 and eiφ|ψ〉 correspond to the same physical

state.

Bloch sphere representation: As discussed above, the global phase is physically ir-

relevant. Thus without the loss of generality a pure state |ψ〉 ∈ C2 can be expressed as,

FIG. 1.1: Bloch sphere representation for qubit. The points on the surface of the sphere correspond
to pure states and the points inside the surface correspond to mixed states.

|ψ〉 ≡

 cos( θ
2
)

eiϕ sin( θ
2
)

 ,

where 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π. There is a one-to-one correspondence between pure

qubit states and the points on a unit sphere S2 in R3 (see Fig.1.1). The Bloch vector

for state |ψ〉 is n̂ = (x, y, z) = (sin θ cosϕ, sin θ sin, cos θ), which lies on the surface of the

sphere. The density matrix for the state |ψ〉 is

ρ = |ψ〉〈ψ| = 1

2

 1 + cos θ e−iϕ sin θ

eiϕ sin θ 1− cos θ
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1.1 A brief introduction to quantum mechanics

Any density operator ρ can also be written in terms of operator basis {1, σx, σy, σz}, as,

ρ = 1
2
(1 + n̂.~σ). Here σx, σy, σz are the well known Pauli matrices and ~σ ≡ (σx, σy, σz).

1 =

 1 0

0 1

 , σx =

 0 1

1 0

 , σy =

 0 −i
i 0

 , σz =

 1 0

0 −1

 .

From the positivity and trace conditions norm of ~n should be bounded by unity, i.e., 0 ≤
|~n| ≤ 1. For pure states we have |~n| = 1, for the mixed states we have 0 ≤ |~n| < 1. As for

example |~n| = 0 corresponds to the completely mixed state 1/2.

1.1.3 THREE LEVEL QUANTUM SYSTEM: QUTRIT

The structure of the state space of the generalised Bloch sphere (Ωd), is much richer for d ≥
3 [14, 15]. Qutrit states can be expressed in terms of Gellmann matrices that are familiar

generators of the unimodular unitary group SU(3) in its defining representation with eight

Hermitian, traceless and orthogonal matrices λj, j = 1, ...., 8 satisfying tr(λkλl) = 2δkl, and

λjλk = (2/3)δjk + djklλl + ifjklλl. The expansion coefficients fjkl, the structure constants

of the Lie algebra of SU(3), are totally anti-symmetric, while djkl are totally symmetric.

Explicitly djkl are

d118 = d228 = d338 = −d888 =
1√
3
, d448 = d558 = d668 = d778 = − 1

2
√

3

d146 = d157 = −d247 = d256 = d344 = d355 = −d366 = −d377 =
1

2
. (1.8)

Single-qutrit states can be expressed as

ρ(~n) =
I +
√

3~n.~λ

3
, ~n ∈ R8. (1.9)

Eight Gellmann matrices are the following.

λ1 =


0 1 0

1 0 0

0 0 0

 , λ2 =


0 −i 0

i 0 0

0 0 0

 , λ3 =


1 0 0

0 −1 0

0 0 0

 , λ4 =


0 0 1

0 0 0

1 0 0

 ,
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λ5 =


0 0 −i
0 0 0

i 0 0

 , λ6 =


0 0 0

0 0 1

0 1 0

 , λ7 =


0 0 0

0 0 −i
0 i 0

 , λ8 =
1√
3


1 0 0

0 1 0

0 0 −2

 .

The set of all extremals (pure states) of Ω3 constitute also CP 2, and can be written as

Ωext
3 = CP 2 = {~n ∈ R8|~n.~n = 1, ~n ∗ ~n = ~n}, with ~n ∗ ~n =

√
3djklnknlêj. Here êj is the unit

vector belongs to R8. Non-negativity of ρ demands that ~n should satisfy the additional

inequality |~n|2 6 1. The boundary ∂Ω3 of Ω3 is characterised by ∂Ω3 = {~n ∈ R8|3~n.~n −
2~n ∗ ~n.~n = 1, ~n.~n 6 1}, and the state space Ω3 is given by Ω3 = {~n ∈ R8|3~n.~n− 2~n ∗ ~n.~n 6

1, ~n.~n 6 1}. For two-level systems the whole boundary of the state space represents pure

states, i.e., Ωext
2 = ∂Ω2, while for three-level systems Ωext

3 ⊂ ∂Ω3.

1.1.4 MULTILEVEL QUANTUM SYSTEM: QUDIT

State of a qudit system is represented by a density operator in the Hilbert-Schmidt space

acting on the d-dimensional Hilbert space Hd that can be written as a matrix called density

matrix in the standard basis {|k〉} with k = 0, 1, 2, ..., d − 1. For practical purpose Bloch

vector decomposition of qudit is expressed in a convenient basis system including identity

matrix and d2 − 1 traceless matrices {Γi}

ρ =
1

d
+~b.~Γ. (1.10)

Where Γs are the higher dimension extension of Pauli matrices (for qubits) and Gellmann

matrices (for qutrits) and are called generalised Gellmann matrices(GGM) which are stan-

dard SU(N) generators. There are d2 − 1 Hermitian, traceless, orthogonal GGM and de-

fined as three different types of matrices. In operator notation they have the following

form

(i)d(d− 1)/2 symmetric GGM

Λjk
s = |j〉〈k|+ |k〉〈j|, 1 ≤ j < k ≤ d; (1.11)

(ii)d(d− 1)/2 antisymmetric GGM

Λjk
a = −|j〉〈k|+ |k〉〈j|, 1 ≤ j < k ≤ d; (1.12)
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(iii)(d-1) diagonal GGM

Λl =

√
2

l(l + 1)
(

l∑
j=1

|j〉〈j| − l|l + 1〉〈l + 1|), i ≤ l ≤ d− 1. (1.13)

Qubit observables: Two outcome projective measurement performed of a qubit system

is represented by the Hermitian operator m̂.~σ with outcomes denoted by ±1. The eigen-

states corresponding to eigenvalues ±1 are 1
2
(1± m̂.~σ). Generally the eigenstates of σz ob-

servable are denoted as |0〉 and |1〉, which form an orthonormal basis for the Hilbert space

C2. Projectors corresponding to the outcome 1 and −1 are respectively |0〉〈0| = 1
2
(1 + σz)

and |1〉〈1| = 1
2
(1 − σz). The eigenstates of σx observable are |±〉 = 1√

2
(|0〉 ± |1〉) and that

of σy are | ± i〉 = 1√
2
(|0〉 ± i|1〉). If the measurement m̂.~σ is performed on a qubit prepared

in the state ρ~n, the probability p(±|ρ~n, m̂) of obtaining the the outcome ± turns out to be

p(±|ρ~n, m̂) = Tr
(
ρ~n

1

2
(1± m̂.~σ)

)
=

1

2
(1± ~n.m̂). (1.14)

Qubit POVM: Any linear operator acting on C2 can be written in terms of identity

matrix and Pauli matrices. The most general form of two outcome POVM are given by

qubit effect operators. These effect operators are characterised by two parameters and

given by

E+ =
1

2
[(1 + γ)1 + λn̂.σ]

E− =
1

2
[(1− γ)1− λn̂.σ] (1.15)

λ is known as sharpness parameter and γ called biasedness of measurement. Positivity and

normalisation conditions of POVM elements demands |γ|+ |λ| ≤ 1. These effect operators

reduce to projectors in the limit of λ = 1 and γ = 0, i.e., unbiased sharp effects.

1.1.5 COMPOSITE SYSTEM

Let us now discuss on composite quantum system. We consider here only bipartite quan-

tum states.

Two qubit: Assume that we have two quantum systems each of which are qubit sys-

tem. According to the postulate of composite system (postulate P5) the Hilbert space as-

sociated with two qubit system is C2 ⊗ C2. Suppose eigenstates of σz are |0i〉 and |1i〉,
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which form an orthonormal basis for the ith system (i = 1, 2), the set of composite states

{|01〉 ⊗ |02〉, |01〉 ⊗ |12〉, |11〉 ⊗ |02〉, |11〉 ⊗ |12〉} form an orthonormal basis for the composite

Hilbert space C2 ⊗ C2. Tensor product between two arbitrary states |φ1〉 ≡ (a1, b1)T of first

system and |φ2〉 ≡ (a2, b2)T of second system is defined as (here the superscript T denotes

transposition):

|φ1〉 ⊗ |φ2〉 =

 a1

b1

⊗
 a2

b2

 ≡


a1a2

a1b2

b1a2

b1b2

 .

For economy of symbols we will denote |φ1〉 ⊗ |φ2〉 as |φ1φ2〉. Any composite state which

can be expressed as tensor product of pure states of the corresponding sub systems is

called pure product state. However, there are pure state which can not be written as

tensor product of pure states of two sub systems. Such states are called entangled states.

Example of 2-qubit entangled states are the well known Bell states |ψ±〉 = 1√
2
(|01〉 ± |10〉)

and |φ±〉 = 1√
2
(|00〉 ± |11〉), where |ψ−〉 is called singlet states and rest three are called

triplet states. These are maximally entangled states in 2⊗ 2 dimension also.

Generic form of any two qubit state: Quantum systems can be mixture of pure states

also. Then an arbitrary state of the C2 ⊗ C2 system can be represented as:

ρ12 =
1

4

(
1⊗ 1 + ~r.~σ ⊗ 1 + 1⊗ ~s.~σ +

3∑
n,m=1

tnmσn ⊗ σm

)
, (1.16)

where ~r, ~s ∈ R3, with 0 ≤ |~r|, |~s| ≤ 1, σ1 = σx, σ2 = σy, σ3 = σz and all other notations

having usual meaning. The coefficients tnm = Tr(ρ12σn ⊗ σm) form a real matrix denoted

by T called correlation matrix. Vectors ~r and ~s are local parameters and they determine

density operator of the subsystems and given by,

ρ1 ≡ Tr2ρ12 =
1

2
(1 + ~r.~σ), ρ2 ≡ Tr1ρ12 =

1

2
(1 + ~s.~σ). (1.17)

Here Tri denotes partial trace over the ith sub system. If an density matrix can be ex-

pressed as convex combination of pure product states, i.e., ρ12 =
∑

j pjρ
j
1 ⊗ ρ

j
2, with {pj}

being a probability distribution, then the state is called a separable state. States which

are not separable are called entangled. Entanglement of a 2-qubit state is determined

by Peres-Horodecki positive partial transposition (PPT) criteria [16, 17]. Let us denote

partial transposition of the state ρ12 as ρTi12 (here transposition is taken on ith system). If
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1.2 Uncertainty principle and relations:

ρTi12 is a positive operator then ρ12 is called a PPT state, otherwise it a negative-PT (NPT)

state. A 2-qubit state is entangled if and only if it is NPT. For 2 × 2 and 2 × 3 system PPT

criterion is a necessary and sufficient condition for an composite density operator to be

separable. However for higher dimensional system this is only a necessary condition. In

higher dimensional system there exists entangled state which are PPT. Considering the un-

extendible product basis (UPB) one can easily construct such PPT entangled states [18].

Schmidt decomposition and state of d ⊗ d system: Schmidt decomposition provides

an useful representation of the pure states of any bipartite quantum systems, i.e., sys-

tems which are composed of two sub systems. A bipartite pure state |ψ12〉 ∈ H1 ⊗ H2,

where dim(H1) = d1 and dim(H2) = d2 ≥ d1, with Schmidt rank r is written as |ψ12〉 =∑r
j=1 αj|e

j
1〉 ⊗ |f

j
2 〉, where r ≤ d1,

∑r
j=1 α

2
j = 1, αj > 0 ∀ j, {|ej1〉}rj=1 is an orthonormal

set of vectors in H1 and {|f j1 〉}rj=1 is an orthonormal set of vectors in H2. Number of non

vanishing terms in mixed decomposition is known as Schmidt rank.

1.2 UNCERTAINTY PRINCIPLE AND RELATIONS:

Now we discuss uncertainty principle, which is the very first principle known about quan-

tum theory and different formulations of uncertainty relation. It prohibits certain proper-

ties of quantum systems from being simultaneously well-defined. Originally Heisenberg[1]

proposed uncertainty principle by demonstrating no precise measurement of two conjugate

variables position and momentum simultaneously. A generalised form of uncertainty re-

lation was proposed by Robertson[19] and Schrödinger[20] and since then, several other

versions of the uncertainty relations have been suggested. The consideration of state-

independence has lead to the formulation of entropic versions of the uncertainty relation

[21]. We first demonstrate derivation of generalised uncertainty relation due to Robertson-

Schrödinger and then entropic uncertainty relation.

1.2.1 DERIVATION OF GENERALISED UNCERTAINTY RELATION

Let us assume an ensemble of identical noninteracting quantum system, each in state

|ψ〉. Derivation for mixed mixed state is straight forward application of this. On half

of ensemble observable A is measured and on another half B is measured. with (∆A)2

and (∆B)2 representing the variances of the observables, A and B, respectively, given by

(∆A)2 = (〈A2〉) − (〈A〉)2, (∆B)2 = (〈B2〉) − (〈B〉)2, and the square (curly) brackets rep-

resenting the standard commutators (anti-commutators) of the corresponding variables.
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1.2 Uncertainty principle and relations:

Suppose, [A,B] = iC and α = A− 〈A〉, β = B − 〈B〉.
With this choice it one can find that [α, β] = iC, (∆α)2 = (∆A)2 = 〈α2〉 and (∆β)2 =

(∆B)2 = 〈β2〉.
In this scenario we have to find lower bound of (∆A)2(∆B)2 = 〈ψ|α2|ψ〉〈ψ|β2|ψ〉.
Now for vectors |φ〉 and |χ〉, Schwartz inequality is given by

|〈φ|χ〉|2 ≤ 〈φ|φ〉〈χ|χ〉. (1.18)

Equality sign holds iff φ = cχ, where c is a constant. Now put |χ〉 = β|ψ〉 and |φ〉 = α|ψ〉.
Then

〈ψ|α2|ψ〉〈ψ|β2|ψ〉 ≥ |〈ψ|αβ|ψ〉|2. (1.19)

Now

αβ =
αβ + βα

2
+
αβ − βα

2
=
αβ + βα

2
+
i

2
C. (1.20)

Hence,

(∆A)2(∆B)2 ≥ 1

4
|〈αβ + βα〉+ iC|2. (1.21)

After some algebra this becomes

(∆A)2(∆B)2 ≥ 1

4
|〈{A,B}〉 − 2〈A〉〈B〉|2 +

1

4
|〈[A,B]〉|2. (1.22)

This is Robertson-Schrödinger uncertainty relation which we call generalised uncertainty

relation (GUR) in the subsequent text.

1.2.2 ENTROPIC UNCERTAINTY RELATION:
In information theoretic purpose the uncertainty is measured by Shannon entropy of the

probability distribution of measurement outcome. For a probability distribution {pi}, Shan-

non entropy is given by

H = −
∑
i

pi log pi. (1.23)
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The Shannon information entropy later has been generalized by Renyi[22]. The Renyi en-

tropy is a one-parameter family of entropic measures that share with the Shannon entropy

many important properties. It is defined as

Hα =
1

1− α
log[
∑
k

pαk ]. (1.24)

pk is a set of probability distribution and α is positive number. In the limit of α→ 1, Renyi

entropy becomes Shannon entropy. The entropic uncertainty relation for two measurement

was, first, introduced by Deutsch [23]. For two probability distribution {pi} and {qj}, it is

given by

H(A) + H(B) ≥ −2 log[
1 + C

2
]. (1.25)

Here, C = maxi,j〈ai|bj〉 and |ai〉, |bj〉 are eigenstate of A and b respectively.

This inequality was improved in the version conjectured in Ref.[24] and then proved in

Ref.[25]. The form of improved entropic uncertainty relation for the measurement of two

observables (R and S) on a quantum system, A (in the state ρA) is given by

HρA(R) + HρA(S) ≥ log2

1

c
, (1.26)

where, HρA(α) is the Shannon entropy of the probability distribution of measurement

outcome of observable α (∈ {R, S}) on the quantum system (A) and 1
c

quantifies the

complementarity of the observables. Eq.1.26 is known as Maassen-Uffink inequality. We

sketch here a brief derivation of this inequality. For more one can see[26, 27]

Derivation of Maassen-Uffink inequality: We present here a brief derivation following

Ref.[26]. Every uncertainty relation is based on some mathematical theorem. In the case

of the Maassen-Uffink relation this role is played by the Riesz theorem which states that

for every N-dimensional complex vector X and a unitary transformation matrix T̂ with

coefficients tji, the following inequality between the norms holds

c1/µ ‖ X ‖µ≤ c1/ν ‖ T̂X ‖ν . (1.27)

With constant c = supi,j|tji| and µ, ν obey the relation

1

µ
+

1

ν
= 2. (1.28)
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Where, 1 ≤ ν ≤ 2 and norms are defined as ‖ X ‖= [
∑

k |xk|µ]1/µ.

Now take xi = 〈ai|ψ〉, tji = 〈bj|ai〉 so that

N∑
i=1

tjixi = 〈bj|ψ〉. (1.29)

Suppose qj = 〈aj|ψ〉, pi = 〈bi|ψ〉, then above theorem gives

c1/µ[
∑
j

q
µ/2
j ]1/µ ≤ c1/ν [

∑
i

p
ν/2
i ]1/ν . (1.30)

Now take µ = 2α, ν = 2β. Using these parameters and taking logarithm of both side of

above inequality we obtained uncertainty relation for Renyi entropy

HA
α + HB

β ≥ −2 log c. (1.31)

In the limit α→ 1, β → 1 this yields Maassen-Uffink uncertainty relation.

1.3 CORRELATIONS AND NO-GO THEOREMS

Natural events occur in the background of space-time. Measurement outcomes obtained

from spatially separated systems give rise to spatial correlation. Issue of quantum non-

locality is associated with spatial correlation. On the other hand measurements done on

a single system at different times give rise to temporal correlation. Measurement done

on a single system with time ordering is also known as sequential measurement. Again

sequential measurements can be commutative or non-commutative. First kind of temporal

correlation associated with contextuality of quantum theory whereas second kind of tem-

poral correlation considered in the context of macro-realism. Quantum correlations are

incompatible with classical theory. For different kind of correlations there are different no-

go theorems which reflects the incompatibility between quantum and classical description

of nature.

1.3.1 NO LOCAL REALIST MODEL FOR SPATIAL CORRELATION

Einstein, Podolsky and Rosen(EPR) in their famous 1935 paper [28], used a peculiar fea-

ture of quantum entanglement to establish the incompleteness of quantum mechanics. EPR

have shown that quantum theory does not satisfy a necessary condition of completeness
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for any physical theory. Nearly thirty years after EPR work, John Bell, in 1966, provided

an empirically testable criterion which is always satisfied by a local realistic theory [2, 29].

Surprisingly, quantum correlation violates this criterion and results to one of the most

counterintuitive conclusion that quantum theory is not compatible with local realism. This

is famously known as Bell’s no-go theorem.

A. EPR paradox and Bell’s no-go theorem

Quantum theory is probabilistic by nature. This probability is not due to subjective igno-

rance about the pre-assigned value of a dynamical variable, rather it is objective in nature.

On the other hand, according to Copenhagen interpretation, quantum system is completely

described by its wave function. This intrinsic probabilistic nature of quantum theory was

not accepted by Einstein. He believed that the fundamental theory of nature should be

deterministic in nature. In [28], they designed an gedanken experiment to establish the

incompleteness of wave function as the description of physical systems. Their argument is

based on the following assumptions:

Necessary condition for completeness: A necessary condition for the completeness of any

physical theory is that “every element of the physical reality must have a counterpart in

the physical theory”.

Sufficient condition for reality: “If, without in any way disturbing a system, we can predict

with certainty (i.e., with probability equal to unity) the value of a physical quantity, then

there exists an element of physical reality corresponding to this physical quantity”.

Locality principle: “Elements of reality belonging to one system can not be affected (instan-

taneously) by measurements performed on another system which is spatially separated

from the former”.

EPR originally considered predictions from measurements of position and momentum on

quantum systems for formulating their argument. Later D. Bohm formulated this argu-

ment for two qubit system [30].

Suppose two observers, Alice and Bob, interacted in the past and then perform measure-

ments on their respective spin-1/2 particles. Let the observers share singlet state:

|ψ−AB〉 =
1√
2

(|0A〉 ⊗ |1B〉 − |1A〉 ⊗ |0B〉). (1.32)

An interesting property of this state is that it is invariant under the same rotations of

observables in the two labs, i.e., the state is symmetric under U ⊗ U , where U is any
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arbitrary unitary operator. For instance, in x-basis (eigen states of spin observable σx) it

takes the same form:

|ψ−AB〉 =
1√
2

(|+A〉 ⊗ |−B〉 − |−A〉 ⊗ |+B〉), (1.33)

where |±〉 = 1√
2
(|0〉 ± |1〉). Measurement outcomes of Alice and Bob are perfectly anti-

correlated. If Alice measures σz then she can predict with certainty the outcome of Bob’s

σz measurement. Thus, according to EPR-assumptions there exists an element of physical

reality associated with the σz measurement. Similarly Alice could also measure σx and pre-

dict with certainty, without in any way perturbing the system, the outcome of a possible σx

measurement by Bob. Again, seemingly there exists an element of reality associated with

the σx measurement. Locality is assumed here by considering that the physical reality at

Bob’s site is independent of anything that occurs at Alice’s site. Since due to uncertainty

relation, quantum mechanics does not allow simultaneous knowledge of both σz and σx,

it lacks some concepts which are necessary for the theory to be complete.

Consequently EPR paper naturally raised the question whether a complete theory can be

constructed (at least in principle) underlying quantum mechanics. Bell motivated by the

work of Bohm [31, 32] considered whether there is possibility of any completion of quan-

tum theory. For quantum systems composed of more than one spatially separated subsys-

tems, Bell investigated whether any local realistic theory can reproduce all the statistical

results of such systems? He succeeded to provide certain constraint (in form of inequal-

ities) which is satisfied by all local realist theories [2] and famously known as Bell’s in-

equality.

Consider a joint system consisting of two subsystems shared between Alice and Bob. Al-

ice performs measurements, randomly chosen from {A1, A2}, on her subsystem while Bob

chooses his measurement from the set {B1, B2}. Let the corresponding measurement re-

sults are a, b ∈ {+1,−1}. Let λ ∈ Λ is local-realistic complete state associated with this

joint system distributed according to a distribution p(λ) : p(λ) ≥ 0 ∀ λ and
∫
λ∈Λ

p(λ) = 1.

For this state, values of every observables are definite locally, i.e., the measurement results

of each of the distant (space-like separated) observers (here Alice and Bob) are indepen-

dent of the choice of observable of the other observer. This assumption reflects the locality

condition inherent in the arguments of EPR. For ontic state λ ∈ Λ expectation value of the
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joint observables 〈AiBj〉λ (i, j ∈ {1, 2}) is calculated as:

〈AiBj〉λ =
∑

a,b∈{+1,−1}

abp(a, b|Ai, Bj, λ),

where p(a, b|Ai, Bj, λ) denotes the probability of obtaining outcome ‘a’ and ‘b’ by Alice and

Bob for measurements Ai and Bj performed by them respectively. Due to realistic nature

of the theory, 〈AiBj〉λ ∈ {+1,−1}. Consider now the expression BCHSH defined as,

BCHSH = 〈A1B1〉λ + 〈A1B2〉λ + 〈A2B1〉λ − 〈A2B2〉λ.

It is straight forward to see that for any fixed λ ∈ Λ, BCHSH = ±2, which in turns implies

that the average of 〈BCHSH〉 over some distribution p(λ) of hidden variables is

−2 ≤ 〈BCHSH〉 =

∫
λ∈Λ

dλp(λ)BCHSH ≤ 2.

Thus we obtain the following Bell-CHSH inequality in terms of experimentally observable

correlation functions 〈AiBj〉,

|〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉| ≤ 2. (1.34)

It is observed that correlations of entangled quantum particles violates this inequality

which implies that quantum theory is not compatible with local realistic framework. For

more on this issue see [33].

B. Quantum theory violates Bell’s inequality

Consider Alice and Bob share an EPR pair of Eq.(1.32) and can only operate locally on their

respective subsystem in two distant laboratories. If Alice and Bob perform spin measure-

ments along m̂A and n̂B direction respectively, then it can be shown that the expectation

value of the local joint observable becomes:

〈ψ−AB|m̂A.~σ ⊗ n̂B.~σ|ψ−AB〉 = −m̂A.n̂B. (1.35)

Let us now choose A1 = σz+σx√
2

, A2 = σz−σx√
2

, B1 = σz, and B2 = σx. Using Eq.(1.35), the

value for the left hand side of Eq.(1.34) turns out to be

|〈A1B1〉ψ−AB + 〈A1B2〉ψ−AB + 〈A2B1〉ψ−AB − 〈A2B2〉ψ−AB | = 2
√

2. (1.36)
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1.3 Correlations and no-go theorems

Hence, we see violation of Bell-CHSH inequality in quantum mechanics. The experimental

tests performed so far show this violation upto some loopholes. These technical loopholes

are gradually being closed and are now believed not to have any fundamental impact on

confirmation of Bell’s inequality violation. Therefore, contrary to the intuition envisaged

by EPR, there can be no underlying local-realistic hidden variable description for correla-

tions from which quantum mechanical predictions can be always derived.

Cirel’son bound : It is demonstrated that quantum correlations violate Bell’s inequality

(1.34). The maximum algebraic value of the left hand side if (1.34) is 4. Now the question

is what is the maximum value obtained by spatial quantum correlation? B.S. Cirel’son

showed that the maximum quantum violation of the Bell-CHSH inequality is limited to

2
√

2, which is known as Cirel’son’s bound [34]. In the following we sketch Cirel’son’s

proof. The Bell operator corresponding to Bell-CHSH expression can be written as

BCHSH := A1 ⊗ B1 + A1 ⊗ B2 + A2 ⊗ B1 − A2 ⊗ B2. (1.37)

For any pure quantum state |ψAB〉 ∈ HA⊗HB shared between Alice and Bob the value for

the Bell-CHSH expression can be calculated as〈ψAB|BCHSH |ψAB〉. Consideration of only

pure states is sufficient here as mixed states being statistical mixture of pure states must

also satisfy the derived upper bound. Actually it is only needed to derive a bound for

sup-norm ||.||sup of the Bell-CHSH operator and the result easily follows (the sup-norm of

a bounded linear operator O is defined as ||O||sup = Sup|ψ〉
||O|ψ〉||
|||ψ〉|| ). According to quantum

mechanics, Alice and Bob’s dichotomic observables producing outcomes {+1,−1} must

obey following relations:

A2
1 = A2

2 = B2
1 = B2

2 = 1, [A1,B1] = [A1,B2] = [A2,B1] = [A2,B2] = 0. (1.38)

where [Ai,Bj] = AiBj−AjBi are commutators of Alice and Bob’s observables. Under these

conditions one can find an identity

B2
CHSH = 41 + [A1,A2][B1,B2].

Also, the following inequality holds for two bounded hermitian operators T1 and T2

||[T1,T2]||sup ≤ 2||T1||sup||T2||sup.
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1.3 Correlations and no-go theorems

Then on applying this inequality we get

||B2
CHSH ||sup ≤ 8⇒ ||BCHSH ||sup ≤ 2

√
2⇒ 〈BCHSH〉|ψAB〉 ≤ 2

√
2 for any state |ψAB〉.

We also seen that the Cirel’son’s bound can be achieved within quantum mechanics.

Next we discuss another class of no-go theorem due to Kochen-Specker [3]. Although the

present thesis does not deal with contextuality, for the sake of self consistency and some

motivation for the later part we discuss it very shortly.

1.3.2 TEMPORAL CORRELATION AND CONTEXTUALITY

In the preceding discussion on Bell’s theorem, it was shown that for nonfactorable state

i.e., entangled state it is possible to find pairs of observables whose correlations violate

Bell’s inequality. Bells theorem strongly constraints the interpretation of measurements as

revealing preexisting properties of physical systems. A natural question is whether such

a behaviour of quantum correlations appears also in more general measurement scenario,

where measurements are not necessarily performed on separated systems.

In quantum mechanics commuting or compatible observables can be jointly measured and

their measurement statistics can be described by classical probability theory. Moreover

commuting measurements can be performed in sequence of any order and repeated many

times, and the outcomes of each measurement are confirmed by the subsequent ones. This

phenomenon suggests the idea that compatible measurements do not disturb each other

and that each measurement apparatus should behave in the same way, independently of

which other compatible measurements are performed together. From Bell’s no-go theo-

rem, we already know that despite such properties a description in terms of noncontextual

hidden variable is, in general, impossible (if measurement done at one site defines the con-

text of measurement done on other site, then ‘no local realist model’ for quantum theory

can be described as a special case of ‘no noncontextual hidden variable theory’ for that).

However, such an approach allows to investigate new phenomena arising from single sys-

tems, with potential new applications[35, 36].

From the assumptions of realism (Observables represent well defined properties of the

system, which are just revealed by the measurement process) and noncontextuality (The

value of an observable is independent of the measurement context, compatible measure-

ments cannot be in a relation of causal influence), the following inequality can be derived

[37]. There is also free will assumption i.e., experimenter is able to choose measurement
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1.3 Correlations and no-go theorems

settings freely.

〈A0A1〉+ 〈A1A2〉+ 〈A2A3〉+ 〈A3A4〉+ 〈A4A0〉 ≥ −3 (1.39)

where Ais are dichotomic measurements. Noncontextual hidden variable (NCHV) i.e.,

classical model does not violates the bound of the above inequality. Whereas by per-

forming measurements on three level system it is found that the inequality can be vi-

olated. For system |ψ〉 = (1, 0, 0) and measurement settings Ai = 2|vi〉〈vi| − I with

|vi〉 = (cos θ, sin θ cos(i4π/5), sin θ sin(i4π/5)), cos2 θ = cosπ/5
1+cosπ/5

, the above inequality be-

comes −3.94.

Kochen and Speckers original approach[3] focused on a more strict notion of NCHV, i.e.,

state independent cotextuality. More precisely, it focused on reproducing also the state-

independent predictions of QM, namely, those given by functional relations between com-

muting quantum observables. For more details on this topic one can see[8, 38, 39].

1.3.3 MACRO-REALISM

Another class of no-go theorem is introduced by Leggett and Garg [4]. This asserts that

quantum mechanics is incompatible with macro-realist hidden variable theory. The notion

of macrorealism is characterized by the following assumptions -

Macroscopic realism per se: At any given instant, a macroscopic object is in a definite one

of the states available to it.

Non-invasive measurability: It is possible, in principle, to determine which of the states the

system is in, without affecting the state itself or the system’s subsequent behaviour.

There is an another assumption implicit in this context is that measurement result at a

time would not be affected by past or future measurements.

A. Derivation of LGI

We begin with a short derivation of LGI following the ontological framework discussed

in[40, 41]. In this framework any Heisenberg picture operator in quantum mechanics can

be written as an average over a set of hidden variables λ. The role of the initial state is to

provide a probability distribution on the set of hidden variables, which we denote as ρ(λ),
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1.3 Correlations and no-go theorems

called the ontic state. The average of an observable can be written as

< Â(t) >=

∫
dλA(λ, t)ρ(λ), (1.40)

whereA(λ, t) is the value taken by the observable on the hidden variable λ. The correlation

between two observables is given by

< B̂(t2)Â(t1) >=

∫
dλB(λ, t2)A(λ, t1)ρ(λ|A, t1). (1.41)

Non-invasive measurability (NIM) can be defined as ρ(λ|A, t1, B, t2...) = ρ(λ), i.e., a mea-

surement performed does not change the distribution of λ (like the locality condition in

Bell’s theorem). Let us take A,B as observables measured on a single system at different

times denoted by Q(t1), Q(t2) . Now, following similar steps as in the derivation of the Bell

inequality, one obtains

< Q̂(t2)Q̂(t1) > − < Q̂(t4)Q̂(t1) >=

∫
dλ[Q(λ, t2)Q(λ, t1)−Q(λ, t4)Q(λ, t1)]ρ(λ|Q, t1)

=

∫
dλQ(λ, t2)Q(λ, t1)[1±Q(λ, t4)Q(λ, t3)]ρ(λ|Q, t1)

−
∫
dλQ(λ, t4)Q(λ, t1)[1±Q(λ, t3)Q(λ, t2)]ρ(λ|Q, t1).(1.42)

Now,

| < Q̂(t2)Q̂(t1) > − < Q̂(t4)Q̂(t1) > | ≤ 2± [

∫
dλQ(λ, t4)Q(λ, t3)ρ(λ|Q, t1)

+

∫
dλQ(λ, t3)Q(λ, t2)ρ(λ|Q, t1)]. (1.43)

Invoking NIM, we have,

| < Q̂(t2)Q̂(t1) > − < Q̂(t4)Q̂(t1) > | ∓ [< Q̂(t3)Q̂(t2) > + < Q̂(t4)Q̂(t3) >] ≤ 2. (1.44)

This is four term Leggett-Garg inequality.

B. Quantum theory violates macro-realism

In an actual experiment, Q(t), a dichotomic observable measured at time t, is found to take

a value +1(−1) depending on whether the system is in the state 1(2). We consider series of

measurements with the same initial conditions such that in the first series Q is measured at

23 c©Shiladitya Mal



1.3 Correlations and no-go theorems

times t1 and t2, in the second at t2 and t3, in the third at t3 and t4, and in the fourth at t1 and

t4 (here t1 < t2 < t3 < t4). From such measurements one obtains the temporal correlations

Cij = 〈QiQj〉 = p++(Qi, Qj)− p−+(Qi, Qj)− p+−(Qi, Qj) + p−−(Qi, Qj), where p++(Qi, Qj)

is the joint probability of getting ‘+’ outcomes at both times ti and tj. Experimentally, these

joint probabilities are determined from the Bayes’ rule p++(Qi, Qj) = p+(Qi)p
+|+(Qj|Qi),

where p+|+(Qj|Qi) is the conditional probability of getting ‘+’ outcome at tj given that ‘+’

outcome occurs at ti.

Let us now briefly describe how quantum violation of the LGI was obtained in[42].

Consider precession of a spin 1/2 particle under the unitary evolution Ut = e−iωtσx/2, where

ω is the angular precession frequency. Measurement of σz at times t1 and t2 yields the

temporal correlation C12 = cosω(t2 − t1). Here the state transformation rule is given

by ρ→ P±ρP±/Tr[P±ρP±]. Choosing equidistant measurement times with time difference

∆t = t2−t1 = π/4ω, the maximum value taken by the l.h.s of Eq.(1.44) is given by 2
√

2. For

a spin j system with a maximally mixed initial state 1
2j+1

∑m=+j
m=−j |m〉〈m|, evolving unitarily

under Ut = e−iωtĴx, measurement of the dichotomic parity operator
∑m=+j

m=−j(−1)j−m|m〉〈m|,
leads to the two-time correlation function given by

C12 = sin[(2j + 1)ω∆t]/(2j + 1) sin[ω∆t]. (1.45)

With these correlations the LGI expressed as K = C12 + C23 + C34 − C14 ≤ 2 becomes

K =
3 sinx

x
− sin 3x

3x
≤ 2, (1.46)

where x = (2j + 1)ω∆t. For x ≈ 1.054, the maximal violation in this case is obtained for

infinitely large j, with the value 2.481, i.e., 42 percent short of the largest violation of 2
√

2

allowed by quantum theory.

We end introduction chapter by discussing framework for ontological model introduced by

Harrigan and Spekkens [43] as this is related to the last chapter of the thesis where we

propose a new derivation of LGI and show how device independent randomness can be

certified through violation of LGI. For more study see [44]
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1.4 Ontological Model for Quantum Theory

1.4 ONTOLOGICAL MODEL FOR QUANTUM THEORY

In this section we briefly discuss the ontological models framework, introduced by Har-

rigan and Spekkens [43] which is formulated mainly with a view to deal with the issue

of status of quantum state. The nature of quantum state has been debated since the in-

ception of quantum theory [28, 45, 46, 47]. When a quantum state |ψ〉 is assigned to

a physical system, does this mean that there is some independently existing property of

that individual system which is in one-to-one correspondence with |ψ〉, or is |ψ〉 simply

a mathematical tool for determining probabilities? In the ontological models framework,

introduced by Harrigan and Spekkens [43], this kind of discussion has been made much

more precise.

While an operational theory is epistemic by nature and does predict the outcome proba-

bilities of certain experiments performed in a laboratory it does not tell anything about

ontic state (a state of reality) of the system. On the other hand, in an ontological model

of an operational theory, the primitives of description are the properties of microscopic

systems. A preparation procedure is assumed to prepare a system with certain properties

and a measurement procedure is assumed to reveal something about those properties. A

complete specification of the properties of a system is referred to as the ontic state of that

system.

1.4.1 BASIC MATHEMATICAL STRUCTURE

We, in the following, briefly describe the ontological framework of an operational theory

(for details of this framework, we refer to [48]), as this will subsequently be used in our

derivation of LGI.

The primitive elements of an operational theory are preparation procedures P ∈ P,

transformations T ∈ T, and measurement procedures M ∈ M, where P,T and M denote

collection of all permissible preparations, transformations and measurements respectively.

An operational theory specifies the probabilities of different outcomes of a measurement

performed on a system prepared according to some definite procedure. Let p(k|P,M) ∈
[0, 1] denote the probability of outcome k when a measurementM is performed on a system

prepared according to some procedure P . Clearly We have
∑

k∈KM p(k|P,M) = 1, ∀ P,M ,

where KM denotes the outcome set of the measurement M .

In an ontological model for quantum theory, a particular preparation method Pψ which

prepares the quantum state |ψ〉, actually puts the system into some ontic state λ ∈ Λ, Λ
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1.4 Ontological Model for Quantum Theory

denotes the ontic state space. An observer who knows the preparation Pψ may nonetheless

have incomplete knowledge of λ. Thus, in general, an ontological model associates a

probability distribution µ(λ|Pψ) with preparation Pψ of |ψ〉. µ(λ|Pψ) is called the epistemic

state as it encodes observer’s epistemic ignorance about the state of the system. It must

satisfy ∫
Λ

µ(λ|Pψ)dλ = 1 ∀ |ψ〉 and Pψ.

Similarly, the model may be such that the ontic state λ determines only the probability

ξ(k|λ,M), of different outcomes k for the measurement method M . However, in a deter-

ministic model ξ(k|λ,M) ∈ {0, 1}. The response functions ξ(k|λ,M) ∈ [0, 1], should satisfy

∑
k∈KM

ξ(k|λ,M) = 1 ∀ λ, M.

Thus, in the ontological model, the probability p(k|M,P ) is specified as

p(k|M,P ) =

∫
Λ

ξ(k|M,λ)µ(λ|P )dλ.

As the model is required to reproduce the observed frequencies (quantum predictions)

hence the following must also be satisfied

∫
Λ

ξ(φ|M,λ)µ(λ|Pψ)dλ = |〈φ|ψ〉|2.

The transformation processes T are represented by stochastic maps from ontic states

to ontic states. T(λ′|λ) represents the probability distribution over subsequent ontic states

given that the earlier ontic state one started with was λ.
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CHAPTER 2

APPLICATIONS OF UNCERTAINTY

RELATIONS

The uncertainty principle being most known of quantum mechanics, provides one of the

first and foremost point of departure from classical concepts. As originally formulated

by Heisenberg [1], it prohibits certain properties of quantum systems from being simul-

taneously well-defined. A generalized form of the uncertainty relation was proposed by

Robertson [19] and Schrödinger [20], and since then, several other versions of the uncer-

tainty relations have been suggested. The consideration of state-independence has lead

to the formulation of entropic versions of the uncertainty principle [21]. A modification

of the entropic uncertainty relation occurs in the presence of quantum memory associ-

ated with quantum correlations [49]. Another version provides a fine-grained distinction

between the uncertainties inherent in obtaining possible different outcomes of measure-

ments [50]. Uncertainty relations have many areas of important applications. To men-

tion a few it has been used for discrimination between separable and entangled quantum

states[51, 52, 53], and the Robertson-Schrödinger generalized uncertainty relation (GUR)

has also been applied in this context of detecting multipartite and bound entanglement as

well [54]. The fine-grained uncertainty relation in conjunction with steering can be used

to determine the nonlocality of the underlying physical system [50, 55] and detection of

steerability as well[56].

This chapter is based on two works [57, 58]. First we demonstrate an application of
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Robertson-Schrödinger generalized uncertainty relation(GUR) in the context of detecting

mixedness/purity of a quantum system. This application considers single qubit system and

classes of two-qubit, single qutrit and two-qutrit system. We also discuss advantages of pu-

rity detection scheme using GUR over state tomography approach in terms of number of

measurements. In the second work we derive a new uncertainty relation in the presence of

quantum memory. Lower bound of this uncertainty relation is optimal in the experimental

conditions. We also identify the proper resource dubbed extractable classical information

responsible for the reduction of lower bound in this scenario.

2.1 DETECTION OF MIXEDNESS OR PURITY

We define a quantity Q(A,B, ρ) by taking all the terms on the left hand side of GUR. Then

GUR for any pair of observables A,B and for any quantum state represented by the density

operator ρ becomes

Q(A,B, ρ) ≥ 0, (2.1)

where,

Q(A,B, ρ) = (∆A)2(∆B)2 − |〈[A,B]〉
2
|2 − |(〈{A,B}〉

2
− 〈A〉〈B〉)|2 (2.2)

with conventional notations discussed in the introduction chapter. The quantity Q(A,B, ρ)

involves the measurable quantities, i.e., the expectation values and variances of the rele-

vant observables in the state ρ. Pure states correspond to the condition ρ2 = ρ which is

equivalent to the scalar condition tr[ρ2] = 1. Hence, complement of the trace condition

can be taken as a measure of mixedness given by the linear entropy defined for a d-level

system as Sl(ρ) = (d/(d− 1))(1− tr(ρ2)). Hence to detect purity of a system one has to de-

termine ρ experimentally i.e., through state tomography. Now we show how the quantity

Q(A,B, ρ) can act as an experimentally realizable measure of mixedness of a system with-

out knowing ρ. Explicitly we show that for a pair of suitably chosen spin observables, GUR

is satisfied as an equality for the states extremal, i.e., the pure states, and as an inequality

for points other than extremals, i.e., for the mixed states. This characterization is shown

for all single qubit states and class of two qubit and single and two qutrit states.
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2.1 Detection of mixedness or purity

2.1.1 SINGLE QUBIT SYSTEM

We first briefly describe the status of GUR with regard to the purity of qubit states. The

density operator for two-level systems can be expressed in terms of the Pauli matrices. The

state of a single qubit can be written as

ρ(~n) =
(I + ~n.~σ)

2
, ~n ∈ R3 (2.3)

Positivity of this Hermitian unit trace matrix demands |~n|2 6 1. It follows that single qubit

states are in one to one correspondence with the points on or inside the closed unit ball

centred at the origin of R3. Points on the boundary correspond to pure states. The linear

entropy of the state ρ can be written as Sl(ρ) = (1 − ~n2). If we choose spin observables

along two different directions, i.e., A = r̂.~σ and B = t̂.~σ, then Q becomes

Q(A,B, ρ) = (1− (Σriti)
2)Sl(ρ) (2.4)

It thus follows that for r̂.t̂ = 0, Q coincides with the linear entropy. For orthogonal spin

measurements, the uncertainty quantified by GUR, Q and the linear entropy Sl are exactly

same for single qubit systems. Thus, it turns out that Q = 0 is both a necessary and

sufficient condition for any single qubit system to be pure when the pair of observables are

qubit spins along two different directions.

2.1.2 TWO QUBIT SYSTEM

For the treatment of composite systems the states considered are taken to be polarized

along a specific known direction, say, the z- axis forming the Schmidt decomposition basis.

The choice of A and B, in order to enable Q(A,B, ρ) as a mixedness measure, for the

two-qubit case, are given by

A = (m̂.~σ1)⊗ (n̂.~σ2) B = (p̂.~σ1)⊗ (q̂.~σ2) (2.5)

where m̂, n̂, p̂, q̂ are unit vectors. For enabling Q(A,B, ρ) to be used for discerning the

purity/mixedness of given two qubit state specified, say, z-axis, the appropriate choice of

observables A and B is found to be that of lying on the two dimensional x − y plane

(i.e.,m̂, n̂, p̂, q̂ are all taken to be on the x − y plane), normal to the z-axis pertaining to

the relevant Schmidt decomposition basis. Then, Q(A,B, ρ) = 0 (i.e., GUR is satisfied as
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an equality) necessarily holds good for pure two-qubit states whose individual spin orien-

tations are all along a given direction (say, the z-axis) normal to which lies the plane on

which the observables A and B are defined. On the other hand, Q(A,B, ρ) > 0 holds good

for most settings of A and B for two qubit isotropic states, Werner states and one param-

eter two-qubit states which comprise of pure states whose Schmidt basis is orthogonal to

the plane on which the observables A and B are defined.

2.1.3 SINGLE QUTRIT SYSTEM

We demonstrate detection of mixedness scheme elaborately for single qutrit system as it is

more involved than the previous two examples. From the introduction chapter we know

that any single qutrit state can be written in terms of identity and eight Gelmann matrices

as

ρ(~n) =
I +
√

3~n.~λ

3
, ~n ∈ R8. (2.6)

For qutrit the most general type of observables can be written as A = â.~λ = aiλi, B = b̂.~λ =

biλi, where, Σa2
i = 1 and Σb2

i = 1. The measurement of qutrit observables composed of the

various λi’s, can be recast in terms of qutrit spin observables [59], e.g., λ1 = (1/
√

2)(Sx +

2{Sz, Sx}), and similarly for the other λi’s. Where the qutrit spins are given by

√
2Sx =


0 1 0

1 0 1

0 1 0

 ,
√

2Sy =


0 −i 0

i 0 −i
0 i 0

 , Sz =


1 0 0

0 0 0

0 0 −1

 . (2.7)

Note that with the choice of A = Â.λ̂ and B = B̂.λ̂, Q becomes

Q = (4/9)(1− (Â.B̂)2) + (4/9)(((Â ∗ Â).~n) + ((B̂ ∗ B̂).~n)

−2(Â.B̂)((Â ∗ B̂).~n)) + (4/9)(((Â ∗ Â).~n)((B̂ ∗ B̂).~n)− ((Â ∗ B̂).~n)2

+4(Â.B̂)(Â.~n)(B̂.~n)− 2(Â.~n)2 − 2(B̂.~n)2 − 3((Â ∧ B̂).~n)2)

−(4/9)(2((Â ∗ Â).~n))(B̂.~n)2 + 2(Â.~n)2((B̂ ∗ B̂).~n))− 4((Â ∗ B̂).~n)(Â.~n)(B̂.~n)) (2.8)

where (Â∗ B̂)k =
√

3dijkAiBj and (Â∧ B̂)k = fijkAiBj. From the expression of Q it is clear

that it changes if ρ is changed by some unitary transformation. For such change of states

the norm of ~n does not change. Purity/mixedness property of a state does not change
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under unitary operations on the state. Hence, it is desirable for any mixedness measure

to remain invariant under unitary operation. This would be possible if Q becomes some

function of only |~n|2 for suitable choice of observables. However, unlike the case of the

single qubit, for the single qutrit Q becomes independent of the linear and cubic terms of

|~n| only for the trivial choice of observables, i.e., Â = B̂, in which case Q becomes zero,

whatever be the state, pure or mixed. Here we employ suitably chosen observables and a

sequence of measurements to turn Q to a detector of mixedness, i.e., Q = 0 for pure, and

Q > 0 for mixed states.

Note further, that under a basis transformation λ′i = UλiU
†, the state becomes ρ′ =

(1/3)(I +
√

3~n′.~λ′) = U(1/3)(I +
√

3~n′.~λ)U †. Now, for any observable χ′ in the prime

basis, one has Tr[χ′ρ′] = Tr[χ(1/3)(I +
√

3~n′.~λ)]. Thus, any non-vanishing expectation

value in the primed basis cannot vanish in the unprimed one, and vice-versa. Hence, in

order to measure in another basis one has to simply choose observables which are unitary

conjugates to the observables written in terms of standard λ basis. Such observables would

again yield Q = 0 for pure, and Q > 0 for mixed states in the new basis. Hence, though

we have specified our scheme based on the single qutrit state in terms of the standard λ

basis [14, 15], our scheme remains invariant with regard to the choice of the basis as long

as the knowledge of the specific basis chosen is available to the experimenter. This means

that the experiment shall involve not only the observables A and B but also a possibility

for simultaneous unitary rotations of these observables.

In what follows we take up to three-parameter family of states (means coefficient at most

any three λ’s can be non-zero) from the state space of qutrit Ω3 [15], and find that there

exist observable pairs which for pure states exhibit minimum uncertainty, viz. Q = 0. Our

scheme runs as follows. Economizing on the number of measurements required, we take

λ3 as A and sequentially, the members of any one of the pairs (λ7, λ6), (λ5, λ4), (λ1, λ2) as

B. The significance of such pairing will be clear later. To be precise in this case what we

show is that if two successive measurements taking B from any of the above pairs yield

Q = 0, the state concerned is pure. In contrast, if B taken from all the above pairs sequen-

tially, yields Q > 0, the state is found to be mixed. (See, Fig. 2.1 for an illustration of the

scheme).

Let us first consider the one-parameter family of single-qutrit states for which only one

of the eight parameters (ni, i = 1, ..., 8) is non-zero. The linear entropy of this class of

states is given by Sl(ρ) = 1 − n2
i . There exist many pairs of observables which can detect
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2.1 Detection of mixedness or purity

FIG. 2.1: Detection scheme for purity of single qutrit states of up to three parameters. The numbers to
the left of the boxes indicate the number of measurements required corresponding to each of the
horizontal levels.

mixedness of this class of states unambiguously. For example, when i = 8, the only pure

state of this class is given by n8 = −1 [15]. Here

Q(λ3, λ7) = Q(λ3, λ6) = (4/9)(2− n8)(1 + n8) (2.9)

Hence, Q = 0 only for n8 = −1, but Q > 0 otherwise. Next, for example when i = 1, one

has

Q(λ3, λ7) = Q(λ3, λ6) = Q(λ3, λ5) = Q(λ3, λ4) = 4/9 (2.10)

It turns out that there is no choice of B from both the sequential pairs (as depicted in Fig.

2.1) for which Q = 0 as there is no pure state for this case. Similar considerations are valid

also for other single parameter qutrit states.

Moving to the two-parameter family of density matrices, (two of the eight parameters

n1...n8 are non zero, while remaining six vanish), note that in this case there are twenty-

eight combinations of different pairs of non-zero parameters, and these classes belongs to

one of the four different types of unitary equivalence classes, viz., circular, parabolic, el-

liptical and triangular [15]. In this case, for example, for states belonging to the parabolic

class, by choosing n3 and n4 to be non-vanishing, Q takes the forms

Q(λ3, λ5) = (2/9)(2 +
√

3n3)(1− 2n2
3)− n2

4/3

Q(λ3, λ4) = (1/9)(4− 8n2
3 − 4

√
3n3

3 − 11n2
4 + 2

√
3n3(1 + 4n2

4)) (2.11)
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Here pure states occur for (n3, n4) = (1/
√

3,±
√

2/3), leading to Q = 0, while Q > 0 corre-

sponding to all mixed states, as is also evident from the expression for the linear entropy

given by Sl(ρ) = (1 − n2
3 − n2

4). Similar considerations apply to other single qutrit states

of the two parameter family, enabling the detection of pure states when two successive

measurements with B taken from sequential pairs (Fig. 2.1) lead to Q = 0.

Next consider the three-parameter family of qutrit states where there are seven geomet-

rically distinct and ten unitary equivalent types of three-sections out of fifty-six standard

three-sections. Considering an example of states belonging to the parabolic geometric

shape, Q has the forms

Q(λ3, λ5) = (1/9)(4− 8n2
3 − 4

√
3n3

3 − 3n2
4 − 11n2

5 + 2
√

3n3(1 + 4n2
5))

Q(λ3, λ4) = (1/9)(4− 8n2
3 − 4

√
3n3

3 − 3n2
5 − 11n2

4 + 2
√

3n3(1 + 4n2
4)). (2.12)

The linear entropy of this class of states is given by Sl(ρ) = 1− n2
3 − n2

4 − n2
5.

When B is chosen from the (λ4, λ5) pair as above, Q turns out to be zero for pure states

given by n3 = 1/
√

3 and n2
4 + n2

5 = 2/3, and Q is greater than zero for all mixed states. It

can be checked that the purity of all three parameter family of single qutrit states can be

determined by the scheme depicted in Fig. 2.1.

2.1.4 TWO QUTRIT

Let us now discuss the case of two-qutrit state discrimination. Here we assume that the

states considered are taken to be polarized along a specific known direction, say, the z-

axis forming the Schmidt decomposition basis.

A two-qutrit pure state in the Schmidt form can be written as |ψ〉 = k1|11〉+k2|22〉+k3|33〉
where, k1, k2, k3 are real with k2

1 + k2
2 + k2

3 = 1, and |1〉, |2〉 and |3〉 are orthonormal unit

vectors in C3. In our purpose a general form of observables acting on the two-qutrit system

is given by A = r̂1.~λ ⊗ r̂2.~λ, and B = t̂1.~λ ⊗ t̂2.~λ, where r̂1, t̂1, r̂2, t̂2 are unit vectors in R8.

For our purpose it is sufficient to take observables of the form

A = λi ⊗ (cos θ2λi + sin θ2λj), B = (cos θ3λi + sin θ3λj)⊗ (cos θ4λi + sin θ4λj) (2.13)

where (i, j) are taken from the pair (1, 2),(3, 8), (4, 5), (6, 7), and θ2, θ3, θ4 are angles be-

tween r̂1 and r̂2, t̂1, t̂2, respectively. With the choice of observables (i = 1, j = 2), the un-

certainty becomes Q(A,B, ρpure) = 4k2
1k

2
2k

2
3 sin(θ2 − θ3 − θ4). Hence, choosing θ2− θ3 = θ4,
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we can make Q = 0 for every pure state.

Now consider a one-parameter class of two-qutrit mixed states expressed as

ρm = pρ1 + (1− p)ρ2 (2.14)

where ρ1 and ρ2 are arbitrary pure states parametrized as ρ1 = |ψ1〉〈ψ1|with |ψ1〉 = k1|11〉+
k2|22〉 + k3|33〉, and ρ2 = |ψ2〉〈ψ2| with |ψ2〉 = k4|11〉 + k5|22〉 + k6|33〉. For such states the

linear entropy is given by Sl(ρm) = 3
2
p(1− p).

The expression for Q under the condition θ2 − θ3 = θ4 is given by Q(A,B, ρm) = 4k2
1p(1−

p)(1− k2
6 − 4k2

4k
2
5(1− p) cos2(θ3 + θ4)) sin2(θ3) which when maximized over all observables

in the selected region (i = 1, j = 2) leads to Q = 4k2
1(1− k2

6)p(1− p).
We observe that the expression for the uncertainty may coincide with the value of linear

entropy for certain choices of the state parameters. In general, Q always vanishes for pure

states, and remains positive for mixed ones, for k1 6= 0, and k6 6= 1.

As another example of two-qutrit states, we consider the popular class of isotropic states

that are invariant under the action of local unitary operations of the form U ⊗ U∗. Two-

qutrit isotropic states can be written as

ρ = pρi +
1− p

9
I ⊗ I (2.15)

where, 0 ≤ p ≤ 1, and ρi = |φi〉〈φi|, with |φi〉 = (1/
√

3)(|11〉 + |22〉 + |33〉). The linear

entropy of this state is given by Sl(ρ) = 2
3
(1 − p2). Our choice of observables leads to

Q = (8/81)(−1+p)(−3−3p+2p2+(−1+p) cos(2θ3)+2p2 cos(2(θ3+θ4)))2 sin θ3. Maximizing

over all observables in the selected region we get Q = 16
81

(1−p)(1 + 2p). which is quadratic

in the parameter p similar to the linear entropy, and is able to distinguish mixed states

from the pure state (p = 1). It may be noted that for the Werner class of states that are

invariant under the local unitary operations of the form U ⊗ U , and which differ from the

Isotropic class for qutrits, there exists no pure state for qutrits, a fact that is reflected in

the corresponding expression for Q that turns out to be Q > 0 always. Class of states

considered are shown schematically in the following figure.

Realistic experimental scenario: It may be noted here that the limitation of instrumental

precision could make the observed value of Q for pure states to be a small number instead

of exactly zero. In order to take into account the experimental inaccuracy, a parameter ε

may be introduced in the analysis. For a single-qubit system, by choosing the measurement
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2.1 Detection of mixedness or purity

FIG. 2.2: Family of states that can be distinguished using the uncertainty relation.

settings for A and B as qubit spins along z and x directions, respectively, the measured

value of the uncertainty obtained as Q ≥ ε leads to the conclusion that the given state is

mixed. This prescription of determining mixedness holds for all single-qubit states ρ(~n) =
(I+~n.~σ)

2
, except those lying in the narrow range 1 ≥ n ≥

√
1− 2ε/3, as determined by

putting Q < ε in Eq.(2.4). A somewhat more elaborate procedure is required for qutrits,

as may be expected from the richer structure of their state space. For the case of single

qutrits belonging to the one, two or three-parameter family of states, one has to find Q

taking A = λ3 and B from the (λ6, λ7), (λ4, λ5), (λ1, λ2) pairs in succession as depicted

in the Fig. 1. If Q < ε for the settings B corresponding to both members of a same

pair measured in succession, then the state is pure within the limitations of experimental

accuracy. Whenever Q ≥ ε, B is chosen from the pair vertically below. If there exists no

such pair for which Q < ε , then the state is mixed. In order to maximize the uncertainty

measured by the variable Q, such that Q ≥ ε for the maximum number of mixed states,

the observables need to chosen so as to avoid |ai/bi| ≈ 1.

For the case of two-qutrit states, the measurement of the observables given by Eq.(2.13)
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System in tomography using GUR
Single qubit 3 3
two qubit 15 3-5

Single qutrit 8 4-8
Two Qutrit 80 4-8

TAB. 2.1: A comparison between the number of measurements required in tomographic method
and in our method is shown for the categories of states considered. Number of measure-
ments for detecting mixedness/purity for bipartite system is much less and for single
party system this method is becoming advantageous with increasing dimension.

with the λi’s chosen from the regions spanned by (λ1, λ2), together with the restriction on

the angle θ3 6= π, suffices to distinguish pure and mixed states. Such a procedure is able

to detect all mixed states within the margin of experimental accuracy. For example, for

the case of the two-qutrit isotropic states the method would fail only for states lying in the

parameter range
√

1− 3ε/2 < p < 1.

2.1.5 ADVANTAGE OVER STATE TOMOGRAPHY

The determination of mixedness using GUR may require in certain cases a considerably

lesser number of measurements compared to tomography. In the case of single qutrit

states, full tomography involves the estimation of eight parameters, while in our prescrip-

tion sometimes four measurements may suffice for detecting purity of a single qutrit state.

For instance, the number 4 besides the top box in Fig. 2.1, means that the four measure-

ments (〈λ3〉, 〈λ7〉,〈λ8〉 and〈λ6〉) are all that is required for the first horizontal level. This fol-

lows from the algebra 〈{λ3, λ7}〉 = −〈λ7〉/2, 〈[λ3, λ7]〉 = 〈λ6〉/2, 〈λ2
3〉 = 2

3
I + 1√

3
〈λ8〉, 〈λ2

7〉 =

2
3
I− 1

2
√

3
〈λ8〉− 1

2
〈λ3〉, 〈[λ3, λ6]〉 = −〈λ7〉/2, 〈{λ3, λ6}〉 = −〈λ6〉/2, 〈λ2

6〉 = 2
3
I− 1

2
√

3
)〈λ8〉− 1

2
〈λ3〉,

which are required to determine Q(A,B, ρ). To proceed vertically down to the next level

in Fig.1, the number of extra measurements are indicated besides the boxes. It may be

mentioned that in our scheme it does not matter if any horizontal pair of boxes are in-

terchanged with another pair at a different level. A maximum of eight measurements

thus suffices to distinguish between pure and mixed states of single qutrit up to three-

parameter families. Advantage over tomography in detecting mixedness becomes promi-

nent for higher dimension as evident from Tab. 2.1.
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2.2 Uncertainty in the presence of quantum memeory

2.2 UNCERTAINTY IN THE PRESENCE OF QUANTUM MEMEORY

A form of the entropic uncertainty relation (EUR) introduced by Deutsch [23], was later

improved in the version conjectured in Ref.[24] and then proved in Ref.[25], given by

H(R) + H(S) ≥ log2

1

c
, (2.16)

where H(k) represents the Shannon entropy for the measurement of observable k ∈
{R, S} and the complementarity of the observables R and S is quantified by the quantity c

(= maxi,j ci,j = maxi,j |〈ri|sj〉|2, with |ri〉 and |sj〉 are the eigenvectors of R and S, respec-

tively).

Considering the correlation of the observed system with another system called quantum

memory, Berta et al. [49] modified the lower bound of entropic uncertainty given by in-

equality (2.16). Recently, Coles and Piani [60] have made the bound tighter. Here, Bob is

able to reduce his uncertainty about Alice’s measurement outcome with the help of com-

munication from Alice regarding the choice of her measurement performed, but not its

outcome. The modified form of EUR in the presence of quantum memory is given by [60]

S(RA|B) + S(SA|B) ≥ c′(ρA) + S(A|B) (2.17)

where c′(ρA) = max{c′(ρA, RA, SA), c′(ρA, SA, RA)}. c′(ρA, RA, SA) and c′(ρA, SA, RA) are

defined by

c′(ρA, RA, SA) =
∑
i

pri log2

1

maxj cij
, c′(ρA, SA, RA) =

∑
j

psj log2

1

maxi cij
, (2.18)

where pri = 〈r|ρA|r〉 with
∑

i p
r
i = 1 and psj = 〈s|ρA|s〉 with

∑
j p

s
j = 1. Here, the uncer-

tainty for the measurement of the observable RA (SA) on Alice’s system by accessing the

information stored in the quantum memory with Bob is measured by S(RA|B) (S(SA|B))

which is the conditional von Neumann entropy of the state given by

ρRA(SA)B =
∑
j

(|ψj〉RA(SA)〈ψj| ⊗ I)ρAB(|ψj〉RA(SA)〈ψj| ⊗ I)

=
∑
j

p
RA(SA)
j Π

RA(SA)
j ⊗ ρRA(SA)

B|j , (2.19)
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2.2 Uncertainty in the presence of quantum memeory

where Π
RA(SA)
j ’s are the orthogonal projectors on the eigenstate |ψj〉RA(SA) of observable

RA(SA), pRA(SA)
j = Tr[(|ψj〉RA(SA)〈ψj| ⊗ I)ρAB(|ψj〉RA(SA)〈ψj| ⊗ I)],

ρ
RA(SA)
B|j = TrA[(|ψj〉RA(SA)〈ψj| ⊗ I)ρAB(|ψj〉R(S)〈ψj| ⊗ I)]/p

RA(SA)
j and ρAB is the state of

joint system ‘A’ and ‘B’. EUR in presence of quantum memory is modified by the quantity

S(A|B) (= S(ρAB) − S(ρB), where ρB = TrA[ρAB]) which measures the amount of one-

way distillable entanglement [61]. For shared maximal entanglement (i.e., S(A|B) =

−1) between the system and the memory, there is no uncertainty in the measurement of

incompatible observables. EUR in the presence of quantum memory has been brought

out in two recent experiments using respectively, pure [62] and mixed states [63]. For

experimental purposes [63], one can obtain the uncertainty relation from the inequality

(2.17) with the help of Fano’s inequality [64] and it is given by

H(pRd ) + H(pSd ) ≥ c′(ρA) + S(A|B), (2.20)

where pRd (pSd ) is the probability of getting different outcomes when Alice and Bob measure

the same observables R (S) on their respective system. Here lower bound of the uncer-

tainty relation is L1(ρAB) = c′(ρA) + S(A|B).

Later Pati et al. [65] have derived a tighter lower bound of the uncertainty relation which

is

S(RA|B) + S(SA|B) ≥ c′(ρA) + S(A|B) + max{0, DA(ρAB)− CM
A (ρAB)}, (2.21)

where the quantum discord DA(ρAB) is given by [66, 67], DA(ρAB) = I(ρAB) − CM
A (ρAB),

with I(ρAB) (= S(ρA) + S(ρB) − S(ρAB)) being the mutual information of the state ρAB

which contains the total correlation present in the state ρAB, and the classical informa-

tion CM
A (ρAB) for the shared state ρAB (when Alice measures on her system) is given by,

CM
A (ρAB) = maxΠRA [S(ρB) −

1∑
j=0

pRAj S(ρRAB|j)]. In this case, the lower bound of the above

uncertainty relation is given by

L2(ρAB) = c′(ρA) + S(A|B) + max{0, DA(ρAB)− CM
A (ρAB)}, (2.22)

L2 is tighter than L1 for those state whose quantum discord is larger than the classical

information. This is true for a class of states including Werner states and isotropic states.
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2.2.1 OPTIMAL BOUND AND CLASSICAL INFORMATION

In a recent work [68], it was shown that the lower bound of the uncertainty relation given

by Eqs. (2.17) and (2.21) are not optimal as illustrated by the analysis of an experiment

using mixed states [63]. In [68] the optimal lower bound of entropic uncertainty relation

was obtained using fine-grained uncertainty relation [50]. Considering a situation [63]

where Alice and Bob both measure the same observable on their system, a new uncertainty

relation was derived [68] which is

H(pRd ) + H(pSd ) ≥ H(pσzd ) + H(pSinf), (2.23)

where the lower bound given by L3(ρAB) = H(pσzd ) + H(pSinf).

From 2.23 it is not clear what is the actual resource in terms of correlation between parties,

which is responsible for the modification of the lower bound optimally. Whereas for 2.17

and 2.21 resources are identified with conditional entropy S(A|B) and discord DA(ρAB)

respectively. In the present section we show that the sought after resource is identified

with extractable classical information by deriving a new uncertainty relation in terms of

it. Interestingly it is also found that in the experimental scenario considered, classical

correlation in the absence of quantum correlation can also be useful for reduction of the

uncertainty-lower bound.

2.2.2 UNCERTAINTY RELATION USING EXTRACTABLE CLASSICAL INFORMA-

TION

To derive the sum of uncertainties for the measurement of two incompatible observables

R and S, we consider the following memory game [49]. In this game Bob prepares a

particle (labeled by ‘A’) in a particular state, say, ρA and sends it to Alice who measures

an observable chosen from the non-commuting set {RA, SA} and communicates only the

choice of the observable to Bob. Bob’s task is to reduce his uncertainty about the Alice’s

measurement outcome. To win the game, Bob chooses one of the following two strategies

– (i) classical strategy; (ii) quantum strategy.

Classical strategy : Here, Bob prepares two particles in the identical state, ρ = ρA = ρB.

The combined state of two particles is given by

ρAB = ρA ⊗ ρB. (2.24)
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Note here that Bob keeps full information of the state of Alice since he himself has pre-

pared it. Here, the uncertainty relation prevents Bob to know with arbitrary precision

the measurement outcomes of two non-commuting observables. The EUR which gives the

lower bound for the measurement of the above two non-commuting observables follows

from Eq.(2.17) for product states and is given by [60]

H(RB) + H(SB) ≥ c′(ρB) + S(ρB), (2.25)

where the subscript B labels Bob’s measurement. The inequality (2.25) is tighter than the

entropic uncertainty relation given by inequality (2.21), and hence, Bob can not reduce

his uncertainty about Alice’s measurement outcome below the lower bound L0(ρAB) =

c′(ρB) + S(ρB).

Note that, the state given by Eq.(2.24) has zero classical correlation (i.e., CM
A = 0) and

zero quantum correlation (i.e.,DA = 0) [69]. The inequality (2.25) represents the entropic

uncertainty relation for Bob’s measurements of two non-commuting observables RB and

SB on his system, and pertains to the situation when there is either no correlation with the

other system called quantum memory, or the correlation with the quantum memory is not

considered.

Quantum strategy : In this strategy, Bob prepares two particles in a correlated state.

To reduce his uncertainty further from the bound c′(ρB) +S(ρB) (which is the lower bound

of uncertainty corresponding to the classical strategy), Bob uses the correlations (quan-

tum and/or classical) present in the state ρAB. According to our considered game, when

Alice communicates her choice, say, RA (where ‘A’ labels Alice’s choice), Bob measures

same the observable RB = RA on his particle (labeled by ‘B’). Due to Bob’s measure-

ment, the reduced uncertainty measured by the conditional von-Neumann entropy of the

state, ρARB(=
∑

j p
RB(SB)
j ρ

RB(SB)
A|j ⊗ Π

RB(SB)
j ) now becomes S(A|RB) = S(ρA) − CR

B (ρAB).

After Bob’s measurement, Alice measures the observable RA on her particle. Now, Alice’s

reduced uncertainty for the measurement of observable RA is given by

H(RA|RB) = H(RA)− CR,R
A,B (ρAB), (2.26)

with

CR,R
A,B (ρAB) = H(RA)−

∑
i

pRBi H(qRAi ), (2.27)
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where H(RA) is the Shannon entropy of the probability distribution {qRBk } corresponding

to different measurement outcomes {k} for the measurement of observable RA on Alice’s

particle and H(qRAi ) is the Shannon entropy of the conditional probability distribution

{qRAk|i } for the measurement of observable RA on Alice’s particle, given that Bob gets ith

outcome for the measurement of the same observable (RB) on his particle. We define the

quantity CR,R
A,B (ρAB) as the “extractable classical information”.

Similarly, when both Alice and Bob measures the observable S, the conditional entropy

becomes H(SA|SB) = H(SA)− CS,S
A,B(ρAB), where CS,S

A,B(ρAB) is the extractable classical in-

formation for the measurement of the observable S on the both particles. Now, combining

the above results

H(RS|RB) + H(SA|SB) = H(RA) + H(SA)− CR,R
A,B (ρAB)− CS,S

A,B(ρAB) (2.28)

The sum of the first two terms on the r.h.s. of the above equation (2.28) represents the

entropy of a single system (system A) when there is either no correlation with the other

system called quantum memory, or the correlation with the quantum memory is not con-

sidered. Hence, the sum H(RA)+H(SA) can be constrained through the inequality (2.25),

using which we obtain

H(RA|RB) + H(SA|SB) ≥ c′(ρA) + S(ρA)− CR,R
A,B (ρAB)− CS,S

A,B(ρAB), (2.29)

where ρA is the density state of Alice’s particle. Now, using Fano’s inequality [64], Eq.(2.29)

becomes

H(pRd ) + H(pSd ) ≥ c′(ρA) + S(ρA)− CR,R
A,B (ρAB)− CS,S

A,B(ρAB), (2.30)

where H(pαd ) is the Shannon entropy of the probability distribution {pαd} when Alice and

Bob measure same observable α ∈ {R, S} and get different outcomes. Eq.(2.30) represents

our new uncertainty relation when both Alice and Bob measure two incompatible observ-

ables R and S. Hence, the lower bound of Bob’s uncertainty about Alice’s measurement

outcomes is given by

L4(ρAB) = c′(ρA) + S(ρA)− CR,R
A,B (ρAB)− CS,S

A,B(ρAB). (2.31)
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2.2.3 EXAMPLES

In the following analysis we compare the bound L4(ρAB) with the lower bounds obtained

earlier in the literature, viz., L1(ρAB) [49, 63], the bound L2(ρAB) [65], the bound L3(ρAB)

[68], as well as the bound L0(ρAB) for various classes of pure and mixed entangled and

separable states. We show that the lower bound given by Eq.(2.31) is optimal as obtained

through fine-graining [68] for all the cases considered here.

Pure entangled state : Here we consider a pure entangled state ρPEAB, given by

ρPEAB =
√
α|01〉AB −

√
1− α|10〉AB, (2.32)

where α lies between 0 and 1, and the state ρPEAB is maximally entangled for α = 1
2
. Now

lower bound for different uncertainty relations are given as

L0(ρPEAB) = 1 + H(α), L1(ρPEAB) = L2(ρPEAB) = 1−H(α),

L3(ρPEAB) = H(
1

2
−
√
α(1− α)). (2.33)

However, in practice Bob is unable to reduce his uncertainty upto the above level, since

L1(ρPEAB) is not the optimal lower bound. The main reason is that Bob only extracts the

information Cσz ,σz
A,B (ρPEAB) (Cσx,σx

A,B (ρPEAB)) given by H(α) (1 −H(1
2
−
√
α(1− α))) when both

of them measure the same spin observables R = σz (S = σx) on their respective particle.

Hence, the lower bound (given by Eq.(2.31)) of Bob’s uncertainty is given by

L4(ρPEAB) = H(
1

2
−
√
α(1− α)). (2.34)

which coincides with L3 as expected.

Werner State : For the class of Werner State ρWAB(= 1−p
4
I⊗I+p|ψ−〉〈ψ−|), these bounds

are given by

L0(ρWAB) = 2, L1(ρWAB) = 2− I(ρWAB), L2(ρWAB) = 2− 2CM
B (ρWAB) = 2H(

1− p
2

), (2.35)

L3(ρWAB) = 2− 2CM
B (ρWAB) = 2H(

1− p
2

), L4(ρWAB) = 2H(
1− p

2
). (2.36)

Thus, for the Werner class of states, Bob can actually minimize his uncertainty about Al-
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2.2 Uncertainty in the presence of quantum memeory

FIG. 2.3: A comparison of the different lower bounds for the (i) Werner state with p = 0.723, (ii) the state
with maximally mixed marginals with the ci’s given by cx = 0.5, cy = −0.2, and cz = −0.3, and
(iii) the Bell diagonal state with p = 0.5.

ice’s measurement outcome upto 2H(1−p
2

). The lower bound L1(ρWAB) (≤ L3(ρWAB)) is not

experimentally reachable.

Bell diagonal state : Bell diagonal state, ρBDAB = pρ2 +(1−p)ρS, used in Ref.[63], where

ρ2 is the density matrix of the state |00〉+|11〉√
2

. For this class of states lower bounds are given

by

L0(ρBDAB ) = 2, L1(ρBDAB ) = L2(ρBDAB ) = H(p), L3(ρBDAB ) = H(p), L4(ρBDAB ) = H(p). (2.37)

Here the lower bound predicted by [49, 65] is optimal. From the expression of L3 and L4

it is clear that the extractable classical information Cσz ,σz
A,B (ρBDAB ) = 1−H(p), Cσy ,σy

A,B (ρBDAB ) = 1

is responsible for reducing Bob’s uncertainty optimally.

Maximally mixed marginal state : The maximally mixed marginal state ρMM
AB is given

by, ρMM
AB = 1

4
(I+

∑
i=x,y,z ciσi⊗σi). where the coefficients ci’s (i ∈ {x, y, z}) are constrained

by the eigenvalues λi ∈ [0, 1] of ρMM
AB given by

λ0 =
1− cx − cy − cz

4
, λ1 =

1− cx + cy + cz
4

, λ2 =
1 + cx − cy + cz

4
, λ3 =

1 + cx + cy − cz
4

(2.38)

Here we consider cx = 0.5, cy = −0.2, and cz = −0.3, and for this choices, the observable

R = σz and S = σx minimizes Bob’s uncertainty [68]. For the above choices lower bounds
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are

L0(ρMM
AB ) = 2,L1(ρMM

AB ) ≈ 1.558,L2(ρMM
AB ) ≈ 1.622,L3(ρMM

AB ) ≈ 1.745,L4(ρMM
AB ) ≈ 1.745.

(2.39)

For the three classes of the states depicted, one sees that L1 ≤ L2 ≤ (L3 = L4) holds.

FIG. 2.4: A comparison of the different lower bounds for the shared classical state choosing p=0.5.

Classical state : Now, we consider classical state f the form ρCAB = p|00〉〈00| + (1 −
p)|11〉〈11|. For this zero discord state lower bounds are

L0(ρCAB) = 1 + H(p), L1(ρCAB) = L2(ρCAB) = L3ρ
C
AB = L4ρ

C
AB = 1. (2.40)

(2.41)

Hence in this case, L1 = L2 = L3 = L4 = 1 < L0. We thus observe that even purely

classical correlations can play a role in reducing the uncertainty using a shared bipartite

state when the quantum strategy is employed. This result is displayed in Fig.2.4.

2.3 CONCLUDING REMARKS AND FUTURE PERSPECTIVE

The generalized uncertainty corresponding to the measurement of suitable observables

vanishes for pure states and is positive definite for mixed states. Using this feature we

have proposed a scheme to distinguish pure and mixed states belonging to the classes of

all single-qubit, single-qutrit states up to three parameters, as well as several classes of
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two-qubit and two-qutrit states, when prior knowledge of the basis is available. The pro-

cedure suggested here could be helpful also for the detection of entanglement, since purity

of subsystems is related to the entanglement of the joint system. The method of detecting

mixedness using the uncertainty relation is advantageous over tomography in terms of the

number of measurements required, significantly for bipartite qutrit systems, which may

have applications in information processing protocols such as distributed computing [70]

and security enhancement of quantum cryptography [71].

In the later work we have reformulated the uncertainty relation in the presence of quan-

tum memory. The lower bound of uncertainty is derived here using an approach that

is different from the fine-graining employed earlier in the context of memory[68] and

steering[56]. Though it turns out that for several important and widely considered ex-

amples of two-qubit states the bound derived here and that using fine-graining turn out

to be numerically equivalent, there is as yet no proof of formal equivalence between the

two derived bounds using two a priori different concepts of classical information and fine-

graining, respectively. Further investigation into this issue is called for in order to clarify

whether the connection between fine-graining and extractable classical information would

hold true for other classes of two-qubit states, or could even be extended to the case of

higher dimensional systems.
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CHAPTER 3

SHARING OF NONLOCALITY IN

QUANTUM THEORY

Correlations in quantum theory is discussed in introduction for three different scenarios.

Nonlocality pertaining to spatial correlation is one of the well known counter classical

features of quantum mechanics. In classical theory correlation obtained through measure-

ments on space like separated systems is always explained in local realistic framework.

However, there exists quantum correlations emerging from entangled states which can-

not be explained by local realist model. Due to monogamy nature of nonlocal correlation,

which is no-signalling also, it cannot be shared by more than two observers. In this chapter

we consider the problem of sharing of nonlocality in a scenario where no-signalling con-

straint is not valid. Specifically we prove nonlocality pertaining to a single member of an

entangled pair of particles can be shared with two independent observers who sequentially

perform measurements on the other member of the entangled pair but not more than two.

This chapter is based on Sharing of Nonlocality of a single member of an Entangled Pair Is

Not Possible by More Than Two Unbiased Observers on the other wing, S Mal, A S Majumdar,

D Home, Mathematics 4 48(2016) [72].
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3.1 monogamy of nonlocal correlation

3.1 MONOGAMY OF NONLOCAL CORRELATION

Monogamy of nonlocal correlation can be demonstrated by considering CHSH inequality

in tripartite scenario. Let three observer Alice, Bob and Charlie can perform two possible

dichotomic measurements, say, Ax, By, Cz with x, y, z ∈ {0, 1}. CHSH expression between

Alice and Bob is denoted by BAB and Alice and Charlie is BAC . In [73], Scarani and Gisin

shown for three qubit state if 〈BAB〉 > 2 then BAC ≤ 2. In other words if Alice and Bob

demonstrate nonlocality then Alice and Charlie cannot. Later Toner and verstraete [74]

shown for any arbitrary quantum state shared by three parties, we have 〈BAB〉2 +〈BAC〉2 ≤
8. It is to be mentioned here that no-signalling correlation follow monogamy constraint

also. So in this way nonlocality cannot be shared by more than two observers. if no-

signaling constraint is dropped then monogamy constraint should not be obeyed. Now let

us see in what scenario nonlocality can be shared between more than two observers and

how far this can go.

3.2 SHARING OF NONLOCALITY

A new fundamental question on the sharing of nonlocality by multiple observers was posed

recently [75]: Can the nonlocality pertaining to a single member of an entangled pair of

particles be shared among more than two independent observers who sequentially per-

form measurements on the other member of the entangled pair? Note that the monogamy

constraints [73, 76] on entanglement and nonlocality do not apply in this scenario since

the condition of no-signalling is violated. Though the observers who perform consecu-

tive measurements are independent of one another, the observer(s) who perform the prior

measurement(s) implicitly signal to the latter one(s) through the choice of their measure-

ment(s).

Specification of the problem: The experimental scenario considered here [75] is as fol-

lows. One of the particles of an entangled pair is measured by a single observer Alice who

performs projective measurements on one side. There exist multiple observers (Bobs) on

the other side who act sequentially and independently. Using weak measurements with

optimized pointer settings it was shown [75] that Bell-CHSH inequalities between Alice

and an arbitrary number of sequential Bobs can be consecutively violated in case of biased

observation settings used by the various Bobs. In other words, the protocol works when

one of the inputs to the various independent observers occurs a lot more often than the
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other input. Though, in the unbiased input scenario numerical evidence indicated that

violation of the CHSH inequality is impossible by more than two Bobs, it was left as an

open problem to show this analytically [75]. next let us describe how this result can be

proved analytically.

3.3 FORMALISM

In this section we concentrate on the formalism which is required for proving the above

stated problem analytically. To this end we utilise the framework of unsharp measure-

ments [77] or POVMs with a single parameter, based upon the notion of generalised ob-

servables beyond the usual framework projective valued measures (PVM) or sharp mea-

surements. In the measurement process after interaction of the physical system with the

apparatus the latter indicates a particular value corresponding to the former. This indica-

tion is modelled by means of pointer observable assuming an actual value corresponding

to a value of the physical quantity of interest. Actual measurements in which the appa-

ratus are represented by broad meter states, are seldom compatible with PVMs. On the

other hand, the generalised notion of POVMs turns out to be very helpful not only in ex-

plaining some of the conceptual problems of quantum theory, such as joint measurability

of noncommutative observables [78, 79], but in also performing tasks such as probing

non-locality in the case of mixed states. There are non-separable mixed states for which

the Bell-CHSH inequalities are violated not for the usual pair of sharp spins but only for

suitable families of POVMs. For two outcome measurements only projective measure-

ments are sufficient for Bell violation whereas advantages of POVMs are discernible for

measurements with more outcomes [80]. This is an illustration of the fact that optimisa-

tion of information gain in measurements can under certain conditions only be achieved

with POVMs but not with PVMs. A comprehensive introduction to the topic of POVMs

and their application in quantum foundations and experiments can be found in the mono-

graphs [77, 81] and references therein.

Now we provide a brief discussion on the quantum theory of measurement and POVMs.

Then using the formalism of POVMs we show that unsharp observables characterized by

a single unsharpness parameter saturate the optimal pointer condition with respect to the

trade-off between disturbance and information gain, a condition that was earlier obtained

using numerical optimization [75].
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3.3.1 QUANTUM MEASUREMENTS

The minimal content of the notion of measurement in quantum mechanics [82] is given

by the probability reproducibility requirement, according to which a particular measure-

ment scheme qualifies as a measurement of a given observable E if for all initial states

of the system the associated probability distributions of E are reproduced in the resulting

statistics of pointer readings. The information available by a given measurement depends

on the statistical dependencies established by the interaction between the system and the

apparatus. Let S be the system with associated Hilbert space HS, and A be the measur-

ing apparatus with Hilbert space HA. The initial joint state of system and the apparatus

is transformed unitarily during pre-measurement, and is given by U(ρS⊗ρA) 7→ UρS⊗ρAU∗.
An explicit construction of pre-measurement for discrete sharp observables has been known

since the work of von Neumann [83]. Any pre-measurement of an observable determines

a state transformer on a measurable space (Ω,F), I : F 7→ L(T (Hs)) through the relation

IM(X)(ρ) := tr[I⊗ Z(Uρ⊗ ρAU∗)I⊗ Z] (3.1)

where, X ∈ F, and L(T (Hs)) is the set of operators acting on a set of density states. The

state transformer summarizes all the features of the pre-measurement. It recovers the

observable via the relation

tr[E(X)ρ] = tr[IM(X)ρ]∀X ∈ F, ρ ∈ T (HS) (3.2)

The state transformer for projective measurement of a discrete observable A with eigen-

values ais is given by IM(ρ) =
∑

ai∈X PiρPi.

For an observable A =
∑
aiPi with eigenvalue ai and eigenprojectors Pi, pre-measurement

is given by

U(ϕ⊗ φ) =
∑

Piϕ⊗ φi, ϕ ∈ HS, φ ∈ HA (3.3)

Let Z =
∑
ziZ be an observable of apparatus A, known as pointer observable. The

reduced state of the apparatus is given by W (ϕ) =
∑

ai
pAϕ(ai)P [φi] (all the P [φi] are not

necessarily mutually orthogonal) with the probability reproducibility condition given by

pAϕ(ai) = pZW (ϕ)(zi), (3.4)
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where pAϕ(ai) is the probability distribution of outcomes of the observable A and pZW (ϕ)(zi)

is that of the pointer observable. Equation (3.4) implies that the outcome probabilities

for observable A are recovered as the distribution of the pointer values in the final ap-

paratus state. The emerging observable out of this measurement scheme is given by

Ei =
∑
pZW (ϕ)(zi)Pj.

Now, following [81] let us see how POVM emerges quite naturally in an actual measure-

ment on a two level system. Let us take the system-apparatus coupling as U = expiλσ.n̂⊗P.

where P is the momentum operator and the pre-measurement is given by

|Ψ〉 = U(ϕ⊗ φ) =
∑

Piϕ⊗ expiλaiP φ = C+ϕ+ ⊗ φ+ + C−ϕ− ⊗ φ− (3.5)

Vectors expiλaiP φ or φ± need not be mutually orthogonal. Next, to describe registration

of spots on the screen, the pointer observable is modelled by P±, projectors onto the upper

and lower half of the screen. For unsharp observables the state transformer is given by the

generalised Lüder transformer as

IM(ρ) =
∑
ai∈X

√
Eiρ
√
Ei (3.6)

This measurement scheme yields

< Ψ|I⊗ P±Ψ >= |C+|2〈φ+|P+φ+〉+ |C−|2〈φ−|P+φ−〉 := 〈ϕ|E±ϕ〉 (3.7)

where the effects E± constitute the unsharp spin observables actually measured in this

experiment, given by

E± = 〈φ+|P+φ+〉P [ϕ+] + 〈φ−|P−φ−〉P [ϕ−] (3.8)

with E++E− = I, and E2
± 6= E±, i.e., 〈ϕ+|E+ϕ+〉, 〈ϕ−|E−ϕ−〉 6= 0 or 1. If the center of mass

of the wave-packets φ± were well separated and localized in the appropriate half planes,

i.e., if 〈φ±|P±φ±〉 = 1, then 〈φ±|P∓φ±〉 = 0, in which case E± coincides with P [ϕ±]. How-

ever, due to spreading of this wave-packet this coincidence is achieved only approximately.

This provides a possible source of inaccuracy due to quantum indeterminism inherent in

the center of mass wave-function. Even if spin is prepared sharply a priori, its value can
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only be ascribed with some uncertainty.

3.3.2 OPTIMALITY OF INFORMATION GAIN VERSUS DISTURBANCE TRADE-

OFF

Following the work of [75], let us consider a spin 1/2 particle whose initial state is de-

scribed by the state |ψ〉(= α|0〉 + β|1〉). Considering von Neumann type measurements,

after interaction with a meter with the state φ(q), the joint state of system and apparatus

goes to α|0〉⊗φ(q− 1) + β|1〉⊗φ(q+ 1). On tracing out the pointer state the reduced state

of the system is given by

ρ′ = Fρ+ (1− F )(π+ρπ+ + π−ρπ−) (3.9)

where ρ = |ψ〉〈ψ|, and π± are projectors onto states |0〉, |1〉, and F (φ) =
∫∞
−∞〈φ(q+1)|φ(q−

1)〉dq, is called the quality factor of the measurement. The probability of getting outcomes

‘±’ is given by

p(±) = G〈ψ|π±|ψ〉+ (1−G)
1

2
(3.10)

Here, G =
∫ 1

−1
φ2(q)dq, which quantifies the precision of the measurement. It is inde-

pendent of the state of the spin and depends on the width of the pointer compared to the

distance between the eigenvalues. These two parameters F and G characterize a weak

measurement (the case with F = 0 and G = 1 corresponds to a strong measurement). It

was found in [75] that a square pointer yields the relation G = 1 − F . However, such

a pointer is not optimal. An optimal pointer is defined as the one which gives the best

trade-off, i.e., for a given quality factor F , it provides the largest precision G. It was shown

that the optimal pointers satisfy the information-disturbance trade-off condition given by

F 2 +G2 = 1.

For two outcome measurements the notion of unsharp measurement discussed in previous

section is captured by the effect operator, Eλ = (I + λniσi)/2, i = 1, 2, 3., with λ ∈ (0, 1].

Thus, the set of effects can be written as a linear combination of sharp projectors with

white noise, Eλ ≡ {Eλ
+, E

λ
−|Eλ

+ + Eλ
− = I}, given by Eλ

± = λP± + 1−λ
2
I.

In the unsharp formalism the non-selective un-normalised state of the system after pre-

measurement according to the Lüder transformation rule (3.6) is given by ρ′ =
√
Eλ

+ρ
√
Eλ

++
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Eλ
−ρ
√
Eλ
−. From this we get

ρ′ =
√

1− λ2ρ+ (1−
√

1− λ2)(P+ρP+ + P−ρP−) (3.11)

The probabilities of getting the outcomes ± are given by

p(±) = tr[Eλ
±ρ] = λtr[P±ρ] +

1− λ
2

(3.12)

Comparing the two formalisms, i.e., comparing Equation (3.9) with Equation (3.11)

and Equation (3.10) with Equation (3.12), one sees that G = λ and F =
√

1− λ2. Hence,

λ characterises the precision of the measurement. For G = λ = 1, F becomes zero,

this being the limit of sharp measurement. We thus find that the optimal pointer state

condition, F 2 +G2 = 1, derived through an optimization in [75] emerges explicitly within

the formalism of unsharp measurements. In other words, unsharp measurement yields the

maximum information about the system while disturbing the original state minimally.

3.4 ALICE CANNOT SHARE NONLOCALITY WITH MORE THAN

TWO BOBS

We show here analytically that using a pair of entangled spin 1/2 particles Alice cannot

share non-locality with more than two Bobs. To address this question let us consider the

following Bell-CHSH scenario. All the observers have two measurement choices which

they perform one at a time. Tsirelson’s bound is achieved when Alice measures in the

direction X̂ and Ẑ and Bob measures in directions −(Ẑ+X̂)√
2

, −Ẑ+X̂√
2

. As we want to see how

many Bobs can have measurement statistics violating the CHSH inequality with a single

Alice, the 1st Bob cannot measure sharply. This would destroy the entanglement between

the particles shared by Alice and Bob and there would be no possibility of violation of the

CHSH inequality for the 2nd Bob. Hence, in order to share nonlocality among n Bobs, n−1

of them have to measure weakly. Here, it is important to note that each Bob measures

independently of the previous Bobs on the particle of his possession. Hence, any Bob

has to consider the average effect of possible choices of measurements done by previous

Bobs [75]. Here, we do not consider multiple Alice’s, and thus it is not required to consider

unsharp measurement for Alice as it reduces the violation of the CHSH inequality thereby

reducing the possibility of sharing nonlocality for multiple Bobs. However, there may be a
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possibility of getting an advantage if Alice performs sharp nonorthogonal measurements.

We comment on this issue later.

The joint probability of getting the outcome ‘a’ and ‘bn’ by Alice and Bobn (the n-th

Bob) respectively, is given by

p(a, bn) = p(a)p(bn|a) =
1

2
Tr[

I + λnbnŷn.~σ

2
ρn|y1...yn−1 ] (3.13)

where ρn|y1...yn−1 is the state of the pair of spin-1
2

particles before the measurements of

Alice and Bobn, and yi is the measurement done by the i-th Bob. For two Bob measuring

in succession, the joint probability is given by

p(a, b2) =

√
1−λ2

1

2
1−ab2λ2ŷ2.x̂

2
+

1−
√

1−λ2
1

2
1−ab2λ2x̂.ŷ1ŷ1.ŷ2

2
. (3.14)

The measurement directions chosen for Alice are X̂, Ẑ, and those for Bob are −(Ẑ+X̂)√
2

, −Ẑ+X̂√
2

.

For the first Bob measuring weakly and the second Bob measuring sharply, the CHSH val-

ues are given by CHSHAB1 = 2
√

2λ1, and CHSHAB2 =
√

2(1+
√

1− λ2
1) respectively. This

result coincides with that obtained in [75]. In this case both Bobs obtain violation of the

Bell-CHSH inequality when the precision of the 1st Bob remains within the range 1/
√

2

and
√

2(
√

2− 1).

Now consider the case of three Bobs with a single Alice. In this case the 1st and 2nd

Bobs both measure weakly, while the last Bob measures sharply. We get

p(a, b3) = 1
2
[
√

1− λ2
1

√
1− λ2

2
1−ab3λ3ŷ3.x̂

2
+ (1−

√
1− λ2

1)
√

1− λ2
2

1−ab3λ3x̂.ŷ1ŷ1.ŷ3

2
+

√
1− λ2

1(1−
√

1− λ2
2)1−ab3λ3x̂.ŷ2ŷ2.ŷ3

2
+ (1−

√
1− λ2

1)(1−
√

1− λ2
2)1−ab3λ3x̂.ŷ1ŷ1.ŷ2ŷ2.ŷ3

2
].

(3.15)

Here λ2 is precision of measurement by the 2nd Bob. The correlation between Alice

and Bob3 is given by

C3 = λ3[
√

1− λ2
1

√
1− λ2

2ŷ3.x̂+ (1−
√

1− λ2
1)
√

1− λ2
2x̂.ŷ1ŷ1.ŷ3+

√
1− λ2

1(1−
√

1− λ2
2)x̂.ŷ2ŷ2.ŷ3 + (1−

√
1− λ2

1)(1−
√

1− λ2
2)x̂.ŷ1ŷ1.ŷ2ŷ2.ŷ3].

(3.16)

As any Bob is ignorant about inputs of previous Bobs, this correlation has to be averaged

over all possible earlier inputs. Hence, one has C̄3 =
∑

y1y2
C3P (y1)P (y2).
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With this average correlation we find the CHSH sum between Alice and Bob3 given by

I3 =
(1 +

√
1− λ2

1)(1 +
√

1− λ2
2)√

2
. (3.17)

For the 1st and 2nd Bobs the corresponding CHSH values are given by CHSHAB1 =

2
√

2λ1 and CHSHAB2 = λ2

√
2(1+

√
1− λ2), respectively. In order for the 1st Bob to obtain

violation of the Bell-CHSH inequality, his measurement precision λ1 has to be greater than

1/
√

2. For the 2nd Bob to get the violation, it is required that λ2 >
2√
2+1

. Thus, it follows

from Equation (3.17) that if the first two Bobs obtain violation, the subsequent CHSH value

corresponding to Bob3 cannot be greater than 2. In the worst case scenario of violation

of CHSH by Bob1 and Bob2, i.e., when both of them obtain minimal violation, I3 can not

becomes greater than 1.88.

The above arguments were based on the assumption of orthogonality for the measure-

ments performed by the Bobs. Let us now consider the scenario when the orthogonality

condition for the Bobs’ measurements is relaxed. In this case the meausurements per-

formed by the n-th Bob may be denoted as

y0
n = cos θn0Ẑ + sin θn0X̂, y

1
n = cos θn1Ẑ + sin θn1X̂. (3.18)

Alice’s measurements are the same as before, i.e., X̂, Ẑ. In the case of non-orthogonal

measurements done by all the Bobs CHSH violation is not possible by more than two of

them. With the non-orthogonal measurements defined above, we have I1(xy1) = λ1Ĩ
1(xy1).

where Ĩ1(xy1) = (cos[θ10]−cos[θ11]+sin[θ10]+sin[θ11]). After the 1st and 2nd Bob measuring

weakly the CHSH expression between Alice and 2nd Bob is given by

I2(x(y1)y2) = λ2[(1− F1)Ĩ2(x(y1)y2) + F1Ĩ
1(xy2)]. (3.19)

In the above expression Ĩ2(x(y1)y2) = 1
2

∑1
i,j=0((−1)j cos θ1i + sin θ1i) cos(θ1i − θ2j), and

in the argument of Ĩ2, (y1) implies averaging over the inputs of Bob1. Now denoting

Fi =
√

1− λ2
i , and with the 3rd Bob measuring sharply, we have

I3(x(y1y2)y3) = F1+F2

2
Ĩ1(xy3) + (1−F1)F2

2
(Ĩ2(x(y1)y3)− Ĩ2(x(y1 + π

2
)y3))+

(1−F2)F1

2
(Ĩ2(x(y2)y3)− Ĩ2(x(y2 + π

2
)y3)) + (1−F1)(1−F2)

16
Ĩ3(x(y1y2)y3).

(3.20)
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Here (yi + π
2
) means averaging over the measurement directions of Bobi after rotation

by π/2 and Ĩ3(x(y1y2)y3) =
∑1

k=0[
∑

i=1,2,j=0,1 2 sin(2θij − θ3k) + 4 sin θ3k +
∑

i,j=0,1 sin(2θ1i−
2θ2j+θ3k)]+

∑1
k=0(−1)k[

∑
i=1,2,j=0,1 2 cos(2θij−θ3k)+4 cos θ3k+

∑
i,j=0,1 cos(2θ1i−2θ2j+θ3k)].

With the above expressions for most general settings we find that when I1 = 2I2 = 2,

then one obtains I3 = 2. When both the 1st and 2nd Bobs get 5 percent violation, i.e.,

having CHSH expression equalling 2.1, then I3 → 1.89 at most, with the settings y0
1 ≈

0.19Ẑ + 0.98X̂, y1
1 ≈ −0.19Ẑ + 0.98X̂, y0

2 ≈ 0.19Ẑ + 0.98X̂, y1
2 ≈ −0.19Ẑ + 0.98X̂ and

y0
3 ≈ 0.04Ẑ + 0.99X̂, y1

3 ≈ −0.04Ẑ + 0.99X̂.

It should be noted here that even if we consider nonorthogonal measurements by Alice

along with all the Bobs we get similar results with expressions involving more variables.

There exists settings for which I3 becomes at most 2 when I1 = I2 = 2. Again, when

the 1st and 2nd Bobs get 5 percent violation, I3 → 1.89 at most, and for these settings

we find that Alice’s measurements are orthogonal. It is thus clear that more than two

Bobs can never share the nonlocality of a pair of spin 1/2 particles with a single Alice, a

result that was numerically conjectured in [75]. One may note that the sequence of the

particular Bobs is not important in this scenario. For example, Bob3 may obtain violation

if the sharpness of the 2nd Bob’s measurement is sufficiently weak for the latter not to

get a violation. There exists a range of unsharpness parameters for each Bob so that any

one pair of Bobs in the combinations (Bob1, Bob2), (Bob1, Bob3), or (Bob2, Bob3) can

simultaneously demonstrate non-locality.

3.5 CONCLUDING REMARKS AND FUTURE PERSPECTIVE

Generalised notion of quantum measurements modelled by POVM has various kind of

advantages over notion of sharp von Neumann type measurements in explaining many

quantum features. In the context of sharing nonlocality of a single member of an entangled

pair of qubits by multiple observers on the other wing it is shown analytically that more

than two observers can not share nonlocality by considering unsharp measurements which

is one parameter POVM. Next it will be interesting to study what if there are several

observers in both wings also.
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CHAPTER 4

INCOMPATIBILITY BETWEEN

MACROREALISM AND QUANTUM

THEORY

Complementing the long pursued exploration of the nonclassical features of the micro-

physical world, the probing of the implications and validity of QM at the macroscopic level

has been gradually gaining momentum over the past decade [84, 85, 86, 87]. Relevant

to these studies, a crucial ingredient is provided by the Leggett-Garg form of macrore-

alist inequality [4] involving testable temporal correlation functions, and its validity can

be regarded as a necessary condition for what is known as macrorealism. The notion of

macrorealism is characterized by the following assumptions -

Macroscopic realism per se: At any given instant, a macroscopic object is in a definite one

of the states available to it.

Non-invasive measurability: It is possible, in principle, to determine which of the states the

system is in, without affecting the state itself or the system’s subsequent behavior.

There is an another assumption implicit in this context is that measurement result at a

time would not be affected by past or future measurements.

Quantum mechanics is incompatible with macrorealism. This chapter is based on two

works [88, 89],

i) Optimal violation of Leggett-Garg inequality for arbitrary spin and emergence of classi-
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cality through unsharp measurement, S Mal, A S Majumdar, Phys. Lett. A 380 pp 2265

2270(2016)

ii) Wigner’s form of the Leggett-Garg inequality, No-Signalling in Time, and Unsharp Mea-

surements, D Saha, S Mal, P Panigrahi, D Home, Phys. Rev. A 91, 032117 (2015).

In the first work [88] we show how to obtain optimal violation of LGI involving dichotomic

measurements for arbitrary spin system and then how classicality emerges with unsharp

measurement. In the second work [89] we derive a new necessary condition of macroreal-

ism dubbed Wigner form of LGI and then show its robustness with compare to conventional

LGI with respect to unsharp measurement. We also consider another necessary condition

of MR, namely no-signalling in time(NSIT) and demonstrate its maximal robustness among

other necessary conditions of MR with respect to unsharp measurement.

4.1 OPTIMAL VIOLATION OF LGI FOR ARBITRARY SPIN SYSTEM

AND EMERGENCE OF CLASSICALITY

In probing violation of MR majority of the experiments done with micro-systems. It is

desired to study with large systems e. g., systems with large mass or large quantum num-

ber such as spin or with large number of constituent subsystems. In this direction Kofler

and Brukner studied system with arbitrary large spin[42]. Inspired by the earlier ideas of

Peres [8] on the classical limit of quantum mechanics, they have presented a different the-

oretical approach to emergence of classical physics within quantum theory. They showed

that if consecutive eigenvalues of the spin component can be sufficiently resolved, the LGI

will be violated for arbitrary large spin. On the other hand, with sufficiently coarse grained

measurements, classical laws would emerge for a macroscopic system with very large di-

mension. This approach is rather different from the decoherence program[7]. However,

the violation they obtained for large spin is not maximal. It remains unclear as to why the

violation is lesser than the value 2
√

2 which is achieved for spin 1/2 particles and remains

constant asymptotically for large spin. The choice of observables may indeed have a role to

play in the quantum violation of the LGI. In this section we show there exists measurement

scheme so that optimal violation for arbitrary spin is obtained.
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4.1.1 OPTIMAL VIOLATION OF LGI FOR ARBITRARY SPIN

In order to obtain optimal violation of the LGI for arbitrary spin, we employ a variant of

the measurement scheme suggested earlier by Gisin and Peres [90] in the context of test-

ing local realism. Interestingly, for the case of spatial correlations the above measurement

scheme [90] yields maximal violation of a local realist inequality only for half-integral spin

systems. For integral spin systems the amount of violation drops, and the value of 2
√

2 is

achieved only when the spin becomes infinitely large.

We now show how the maximum correlation up to 2
√

2 which is the upper bound of quan-

tum theory for dichotomic measurements, can be achieved not only for spin 1/2 particles,

but for systems having arbitrary spin too.

Lemma: If a dichotomic observable Q is measured successively at times ti and tj on any

state ρ of a two dimensional system evolving unitarily, then the two-time correlation func-

tion is given by Cij = 1
2
tr[Q(ti)Q(tj)]. Here Q(ti) = U †(ti)QU(ti) and Q(tj) = U †(tj)QU(tj)

are time evolved observables in the Heisenberg picture.

Proof: The initial state ρ is evolved to U(ti)ρU
†(ti). At ti, Q is measured and according to

the outcome ‘±’, the post-measurement state becomes P±U(ti)ρU
†(ti)P±/tr[P±U(ti)ρU

†(ti)P±],

where P± are the two orthogonal projectors of the observableQ, and P±U(ti)ρU
†(ti)P±/p± =

P±. Here, p± = tr[P±U(ti)ρU
†(ti)], are probability of getting outcomes ‘±’. Again, this post-

measurement state is evolved to time tj and becomes U(∆t)P±U
†(∆t), with ∆t = tj − ti.

Now, the conditional probabilities are given by pk|l = tr[PkU(∆t)PlU
†(∆t), where pk|l de-

notes the probability of getting an outcome k at time tj when the outcome l occurs at time

ti. Hence, the two-time correlation is given by

Cij = p+(p+|+ − p−|+) + p−(p−|− − p+|−)

= p+(tr[(P+ − P−)U(∆t)P+U
†(∆t)]) + p−(tr[(P− − P+)U(∆t)P−U

†(∆t)]) (4.1)

Now, using P+ − P− = Q, tr[Q] = 0, p+ + p− = 1, and the cyclic property of the trace, we

have Cij = tr[P+U
†(∆t)QU(∆t)]. Since, P+ = I+Q

2
and U(∆t) = U(t2)U †(t1), we finally

have

Cij = tr[QU †(∆t)QU(∆t)]/2 = tr[U †(t1)QU(t1)U †(t2)QU(t2)]/2. (4.2)
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This completes the proof of the lemma.

Theorem: For any state of a single quantum system of arbitrary spin there exists observ-

ables with eigenvalues ±1 and a measurement scheme such that the Leggett-Garg inequal-

ity can be maximally violated.

Proof: Let Γx,Γy,Γz be block-diagonal matrices, in which each block is an ordinary Pauli

matrix, σx, σy and σz respectively. The only nonvanishing elements are given by

(Γx)2n−1,2n = (Γx)2n,2n−1 = 1, (Γy)2n−1,2n = i, (Γy)2n,2n−1 = −i, (Γz)n,n = (−1)n−1. (4.3)

Suppose mixed states of spin j particles coming from a source are in diagonal form in some

basis {|k〉}, i.e.,

k=j∑
k=−j

pk|k〉〈k| =
k=j∑

k=1/2(0)

(pk|+ k〉〈+k|+ p−k| − k〉〈−k|) (4.4)

where,
∑k=j

k=−j pk = 1. We define an observable Q following [90] in the way given below:

Q =
Γz + Π√

2j + 1
= (σ1

z ⊕ σ2
z + ...⊕ σjz + Π)/

√
2j + 1 (4.5)

where, Π is the null matrix when N(= 2j + 1) is even, and for odd N the only nonvanish-

ing element of Π is (Π)N,N = 1√
2
. In order to maintain optimal violation of the four-term

LGI, we require our time-evolved observables to remain in the block diagonal form men-

tioned above. This can not be ensured by arbitrary rotations of the SG apparatus in space,

except for two dimensional systems. However, this is achieved if each block is evolved

separately [90]. As ⊕j expiθjσx σz exp−iθjσx = ⊕j expiθjσx ⊕jσjz ⊕j exp−iθjσx, time evolution

of the system is affected by

U(t) = exp−iθ1σx ⊕ exp−iθ2σx ⊕...⊕ exp−iθjσx (4.6)

We explain in next paragraph explicitly how this kind of evolution and measurements

are realised experimentally. First, the system is evolved to time t1 and Q is measured.

The post-measurement state is further evolved to time t2, and Q is measured again. This
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scheme can be recast into the Heisenberg picture. Taking all θj = ωt/2 = α, we have

U †(t)QU(t) = (cosαΓz + sinαΓy + Π)/
√

2j + 1. (4.7)

The two-time correlation function C12 using lemma 1, for even N is given by

C12 = Tr[U †(t1)QU(t1)U †(t2)QU(t2)] = [cosα1 cosα2 + sinα1 sinα2]. (4.8)

For odd N , one gets

C12 =
2j(cosα1 cosα2 + sinα1 sinα2) + 1/

√
2

(2j + 1)
. (4.9)

Similarly, C23 and C34 are also obtained. For obtaining the correlation function C14, the

operator Q is taken to be (Γz −Π)/
√

2j + 1. Now, in order to obtain the maximal violation

of the LGI, we choose the time intervals such that α1 = 0, α2 = π/4, α3 = π/2, α4 = 3π/4.

Hence, the value of the Leggett-Garg sum for the spin j system is given by 2
√

2.

Proposed measurement scheme: We briefly discuss the relevant measurement scheme.

Consider single spin j particles emerging from an initial ensemble. These particles are

assumed to possess not only a magnetic moment (an interaction energy µBzJz), but also

an electric quadrupole moment (an interaction energy proportional to EzJ
2
z ). There are

two major stages of the experiment. In the 1st stage the particles pass through a inho-

mogeneous electric fields producing beams with |mz| = j, j − 1...0(1/2). Taken separately,

each of these beams with given |mz| are passed through a uniform magnetic field Bz pro-

ducing energy difference, E, between them. Then an rf pulse generates Rabi oscillations of

frequency ω = E/} among them. This captures the unitary evolution given by (4.6). After

evolving for a time t1, σz is measured. Then, each post-measured beam is again evolved,

and at a time t2, σz is measured. This same procedure is done many times varying the time

of measurements randomly. Correlation statistics are calculated from the measured data

of the LG test.
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4.1.2 UNSHARP MEASUREMENT AND EMERGENCE OF CLASSICALITY

The purpose of this section is to show that with sufficiently unsharp measurements, the

outcome statistics can be described by classical theory. Using a particular form of coarse

graining it was shown in Ref. [42] that when the resolution of the apparatus is much

greater than the intrinsic quantum uncertainty, i.e., ∆m >>
√
j, the outcomes appear to

obey classical laws. Under this condition the measurements become fuzzy enough for the

non-invasive assumption to become essentially valid and the system dynamics mimics the

rotation of a classical spin coherent state for large j. However, there does not exist any

sharp cut-off for the value of the apparatus resolution beyond which classicality emerges.

Now the question is, can the fuzzy measurement leads to classicality for systems of any

dimension, and what is the precise value of the apparatus resolution above which the con-

dition of coarse graining is satisfied ?

Here we follow the theory of unsharp observables [78, 79, 81] which as an element of

unsharp reality provides the necessary ingredient in modelling of the emergence of clas-

sical behaviour within quantum mechanics in a precise and quantitative manner. Using

this formalism we show that below a threshold sharpness of measurement, classicality

emerges in case of system of any dimension. Unsharp measurement is described in chap-

ter three. For self consistency of this chapter we briefly recall the formalism of unsharp

measurements [78, 79, 81] relevant to our present analysis and how it can be cast as

coarse-grained measurement.

In projector valued measurements the observables are self-adjoint operators having pro-

jectors as spectra, i.e., A ≡ {Pi|
∑
Pi = I, P 2

i = Pi}. The probability of getting the i-th out-

come is tr[ρPi] for the state ρ. Extending to positive operator valued measures (POVM), the

observables are self-adjoint operators but with spectra as positive operators within the in-

terval [0, I], i.e., E ≡ {Ei|
∑
Ei = I, 0 < E ≤ I}. Similarly, the probability of getting the i-th

outcome is tr[ρEi]. Effects (Eis) represent quantum events that may occur as outcomes of

a measurement. Here usharp measurement which is a POVM arises coarse-graining of un-

derlying projectors which have sharply determined properties. Effect operators pertinent

to POVM can be decomposed as some linear combinations of projectors. For two outcome

measurements this notion is captured by the effect, Eλ = (I + λniσi)/2, i = 1, 2, 3., with

λ ∈ (0, 1]. Thus, the set of effects can be written as a linear combination of sharp projectors
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and Eλ ≡ {Eλ
+, E

λ
−|Eλ

+ + Eλ
− = I}, given by

Eλ
± =

1 + λ

2
P± +

1− λ
2

P∓ (4.10)

Again eq.4.10 can also be written as= λP± + 1−λ
2
I. This can be thought of as projectors

becoming noisy reflecting inaccuracy of the experiment. Hence, the sharpness parameter λ

can be estimated from the difference between the really observable data and that predicted

by sharp observables.

Under this unsharp measurement, the state transformation for the maximally mixed initial

state is given by the generalised Lüdder’s operation

ρPM± (t1) =
√
E±λρ

√
E±λ/tr[

√
E±λρ

√
E±λ] =

1

2
(I± λσz). (4.11)

The probability of getting ‘±’ outcomes are both 1/2. In order to formulate the rel-

evant LGI, the ρPM± (t1) is evolved for time ∆t, giving exp−i
ω∆t

2
σx 1

2
(I ± λσz) expi

ω∆t
2
σx =

I
2
± λ

2
(cos(ω∆t)σz + sin(ω∆t)σy). With this post-measurement state we find the conditional

probabilities and the two-time correlation function given by C12 = λ2 cos(ω∆t). Hence, the

LGI with unsharp measurement can be written as K ≡ λ2〈LGI〉 ≤ 2, where 〈LGI〉 denotes

the corresponding expression for sharp measurements. Since 〈LGI〉max = 2
√

2, hence it

follows that in the case of unsharp measurements the LGI for a spin 1/2 system is always

satisfied when the sharpness parameter upper bounded by λ < 1/21/4.

Now, let us consider a system having arbitrary spin. As discussed in our conceptual scheme

of measurement in the previous section, in the 1st stage, particles of spin j are sent from

the source to an inhomogeneous electric field. After emerging from the field, each beam

is effectively described by a two dimensional Hilbert space, and evolves under the same

unitary as discussed in previous section. Here we do not consider fuzziness in measure-

ment in the 1st stage but in the 2nd stage where measurements done for LG test. 1st

stage of the experiment allows us to get optimal violation for subsequent LG test. it is

practically not possible to separate each beams perfectly in 1st stage for higher spin. If

beams are taken well distant from the apparatus then each beam can be distinguished in

principle [8]. If the 1st stage is omitted and LG test is done with dichotomic measurements

(like parity)on spin j then it reduces to problem dealt in [42] with violation lesser than

optimal. In this case fuzzy parity measurement can also be treated with unsharp formal-
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ism just discussed above. In our case, in the 2nd stage, beams are subjected to non-ideal

Stern-Gerlach apparatus [91]. In this scenario the effective spin j observable is given by

Q = λ((Γz + Π)/
√

2j + 1), where 0 < λ ≤ 1. Using the lemma it is straightforward to

calculate the two-time correlation function. When N is even, we have

C12 = λ2[cosα1 cosα2 + sinα1 sinα2] (4.12)

and for N odd, it becomes

C12 = λ2[2j cosα1 cosα2 + 2j sinα1 sinα2 + 1/
√

2]/(2j + 1) (4.13)

For both the even and odd cases the optimal value of the sharpness parameter below which

no quantum violation of LGI is possible is upper bounded by 1/21/4 ≡ 0.841. Note in com-

parison that using the maximal violation of the LGI for large spin obtained in Ref. [42], the

required value of this parameter would be 0.8978 in order to ensure satisfaction of the LGI.

Note also, that for the case of spatial correlations, a higher value of the sharpness param-

eter would be required to ensure satisfaction of the relevant local realist inequality, since

the maximal bound there drops for the case of integral spin [90]. For the case of spin-1

particles the value of the required sharpness for spatial correlations turns out to be 0.8852

and coincides with our optimal value (0.841) for temporal correlations with infinitely large

integral spin.

4.2 WIGNER TYPE FORMULATION OF LGI

In this section we discuss a new necessary condition of MR following Wigner’s argument.

This earlier unexplored variant of LGI is formulated by developing an analogy to Wigner’s

form of local realist inequality [92], parallel to the way the usual form of LGI is obtained

analogous to the Bell-CHSH form of local realist inequality [2, 93]. Interesting features

of the QM violation of Wigner’s form of LGI (WLGI) are studied by considering two state

oscillation. Subsequently, the robustness of the QM violation of WLGI with respect to the

imprecision of measurements involved is investigated by using the formalism of what is

known as unsharp measurement [78]. Interestingly, it is found that the QM violation of

Wigner’s form of LGI is more robust against unsharpness of measurement than the usual
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forms of LGI.

Furthermore, we consider the other proposed necessary condition for macro-realism known

as ‘No-signalling in time’ (NSIT) [94]. This condition turns out to be most robust against

unsharp measurement. We conclude by discussing the significance of such results in the

light of analysing the emergence of classicality within quantum theory due to unsharpness

of measurements involved.

4.2.1 DERIVATION OF WLGI
We begin by recapitulating Wigner’s original argument [92] that derived a local realist

testable inequality for a pair of spatially separated spin-1/2 particles in the singlet state.

This was based on assuming as a consequence of local realism, the existence of overall

joint probabilities of the predetermined definite outcomes of measuring the relevant di-

chotomic observables of the two particles that would yield the pair-wise marginal joint

probabilities which are actually measurable. In the scenario studied by Wigner, the spin

components of each of the two spatially separated particles are taken to be measured

along three respective directions, say, â, b̂ and ĉ. Then consider, for example, the ob-

servable joint probability of obtaining both the outcomes +1 if, say, −→σ .â and −→σ .b̂ are

measured on the first and the second particle respectively, denoted as P (â+, b̂+). Us-

ing the perfect anticorrelation property of the singlet state in question, P (â+, b̂+) can

be written as marginal in the form P (â+, b̂+) = ρ(+,−,+;−,+,−) + ρ(+,−,−;−,+,+)

with ρ(v1(â), v1(b̂), v1(ĉ); v2(â), v2(b̂), v2(ĉ)) to be the overall joint probability of the prede-

termined definite outcomes of measurements pertaining to all the relevant observables,

where v1(â) represents the outcome (±1) of measurement of the observable â for the first

particle, and so on. Similarly, considering the expressions for the observable joint proba-

bilities P (ĉ+, b̂+) and P (â+, ĉ+) as marginals, and assuming non-negativity of the overall

joint probability distributions, it follows that

P (â+, b̂+)− P (â+, ĉ+)− P (ĉ+, b̂+) ≤ 0 (4.14)

which is one of the possible forms of Wigner’s version of the local realist inequality.

Next, in order to obtain WLGI by developing an appropriate analogy with the preceding

argument, we proceed as follows. Let us focus our attention on an ensemble of systems

undergoing temporal evolution involving oscillation between the two states, say, 1 and 2,
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and let Q(t) be an observable quantity such that, whenever measured, it is found to take

a value +1(-1) depending on whether the system is in the state 1(2). Now, consider a

collection of sets of experimental runs, each set of runs starting from the same initial state.

On the first set of runs, let Q be measured at times t1 and t2, on the second Q be measured

at t2 and t3, and on the third at t1 and t3 (here t1 < t2 < t3). From such measurements one

can then determine the pair-wise joint probabilities like P (Q1, Q2), P (Q2, Q3), P (Q1, Q3)

where Qi is the outcome (±1) of measuring Q at ti, i = 1, 2, 3. In this context, it is pos-

sible to suitably adapt the argument leading to Wigner’s inequality (4.14) with the times

ti of measurement playing the role of apparatus settings and by assuming, as a conse-

quence of the assumptions of realism and NIM, the existence of overall joint probabilities

ρ(Q1, Q2, Q3) from which by appropriate marginalization the pair-wise joint probabilities

can be obtained. For example, the observable joint probability P (Q2+, Q3−) of obtaining

the outcomes +1 and −1 for the sequential measurements of Q at the instants t2 and t3

respectively can be written as

P (Q2+, Q3−) =
∑
Q1=±

ρ(Q1,+,−) = ρ(+,+,−) + ρ(−,+,−) (4.15)

Writing similar expressions for the other measurable marginal joint probabilities P (Q1−, Q3−)

and P (Q1+, Q2+), we get

P (Q1+, Q2+) + P (Q1−, Q3−)− P (Q2+, Q3−) = ρ(+,+,+) + ρ(−,−,−) (4.16)

Then, invoking non-negativity of the joint probabilities occurring on the RHS of Eq(4.16),

the following form of WLGI is obtained in terms of three pairs of two-time joint probabili-

ties

P (Q2+, Q3−)− P (Q1+, Q2+)− P (Q1−, Q3−) ≤ 0 (4.17)

Similarly, other forms of WLGI involving three pairs of two-time joint probabilities can

be derived by using various combinations of the observable joint probabilities, which are

as follows

P (Q2+, Q3+)− P (Q1−, Q2+)− P (Q1+, Q3+) ≤ 0 (4.18a)

P (Q2+, Q3−)− P (Q1−, Q2+)− P (Q1+, Q3−) ≤ 0 (4.18b)
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P (Q2+, Q3+)− P (Q1+, Q2+)− P (Q1−, Q3+) ≤ 0 (4.18c)

P (Q1+, Q3−)− P (Q1+, Q2−)− P (Q2+, Q3−) ≤ 0 (4.18d)

P (Q1+, Q3−)− P (Q1+, Q2+)− P (Q2−, Q3−) ≤ 0 (4.18e)

P (Q1+, Q3+)− P (Q1+, Q2+)− P (Q2−, Q3+) ≤ 0 (4.18f)

P (Q1+, Q3+)− P (Q1+, Q2−)− P (Q2+, Q3+) ≤ 0 (4.18g)

P (Q1+, Q2−)− P (Q1+, Q3−)− P (Q2−, Q3+) ≤ 0 (4.18h)

P (Q1+, Q2−)− P (Q1+, Q3+)− P (Q2−, Q3−) ≤ 0 (4.18i)

P (Q1+, Q2+)− P (Q1+, Q3+)− P (Q2+, Q3−) ≤ 0 (4.18j)

P (Q1+, Q2+)− P (Q1+, Q3−)− P (Q2+, Q3+) ≤ 0 (4.18k)

Altering the signs in each of the above equations, another set of 12 such 3-term WLGIs

can be obtained.

Now, let the observable Q be measured in n different pairs of instants ti (i = 1, 2, ..., n).

From the notion of macro-realism, one can again assume the existence of the overall joint

probability distributions ρ(Q1, Q2, ..., Qn). Considering the pair-wise observable joint prob-

abilities as the marginals of the overall joint probability distributions, we then get the

following relation

P (Q1+, Q2−) + P (Q2+, Q3−) + ...+ P (Qn−1+, Qn−)

= P (Q1+, Qn−) + (n− 2)2n−2 non-negative terms

From the above expression, the form of WLGI in terms of n pairs of two-time joint proba-
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bilities can be obtained as follows

P (Q1+, Qn−)− (
n−1∑
i=1

P (Qi+, Qi+1−)) ≤ 0 (4.19)

Other various forms of the n-term WLGI can be similarly obtained by using different com-

binations of the joint probabilities for the outcomes (±1) corresponding to Qi’s. However,

for illustrating the basic relevant features concerning the efficacy of WLGI, it suffices for

our subsequent treatment to confine our attention to essentially 3-term WLGI involving

three pairs of two-time joint probabilities.

4.2.2 EXAMPLE OF TWO STATE OSCILLATING SYSTEM

Next, considering a typical two-state oscillation, let us focus on a system oscillating be-

tween the two states |A〉 and |B〉 which are degenerate eigenstates of the Hamiltonian

H0 corresponding to energy E0, with a perturbing Hamiltonian H ′ inducing oscillatory

transition between these two states. Here 〈A|H ′|B〉 = 〈B|H ′|A〉 = ∆E, and 〈A|H ′|A〉 =

〈B|H ′|B〉 = E ′. At any instant, such a system is found to be either in the state |A〉 or

in the state |B〉 corresponding to the measurement of the dichotomic observable Q =

|A〉〈A| − |B〉〈B|. Let the initial state at t1 be of the general form ρ0(t1) = |ψ0〉〈ψ0| where

|ψ0〉 = cos(θ)|A〉+ exp(iφ) sin(θ)|B〉 (4.20)

For the above state, the probability of obtaining the measurement outcome, say, +1 at the

instant t1 is given by tr(ρ0(t1)P+), and after this measurement, the premeasurement state

changes to the state given by ρ+(t1) = P+ρ0(t1)P †+/tr(ρ0(t1)P+) where P+ = |A〉〈A| = P †+.

Subsequently, the post-measurement state evolves under the Hamiltonian H = H0 +H ′ to

the state ρ′+(t2) = U∆tρ+(t1)U †∆t at a later instant t2 where U∆t = exp(−iH∆t) taking ~ = 1

and ∆t = t2−t1. Then, considering the subsequent measurement of Q at the instant t2, the

QM value of, say, the joint probability of obtaining both the outcomes +1 at the instants t1

and t2 is given by

P (Q1+, Q2+) = tr(ρ0(t1)P+)tr(ρ′+(t2)P+) = tr(U∆t(P+ρ0(t1)P+)U †∆tP+) = cos2(θ) cos2(τ)

(4.21)
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where τ = ∆E∆t (in the units of } = 1), and the expression for the unitary matrix

U∆t = exp(−iH∆t) is as follows

U∆t = e−i(E0+E′)∆t[cos(τ)I− i sin(τ)(|A〉〈B|+ |B〉〈A|)] (4.22)

Similarly, one can obtain the QM values of the other relevant joint probabilities oc-

curring on the LHS of the 3-term WLGIs given by Eqs. (4.17)-(4.18) (taking t2 − t1 =

t3 − t2 = ∆t). The QM violations of the inequalities (4.17) and (4.18) can thus be stud-

ied by maximizing the QM values of their respective left hand sides with respect to the

quantity τ = ∆E∆t.

It has been found that the QM violation of the inequalities (4.17)-(4.18) depend on the

the initial state and, among all the 3-term WLGIs (4.17)-(4.18) and the set of other 3-term

inequalities obtained from them, the maximum QM violation is obtained of the inequalities

(4.17) and (5a) when the LHS = 0.5043. Considering, for example, the inequality (4.17),

the maximum QM violation (= 0.5043) occurs for the initial state given by Eq.(4.20) when

θ ≈ 1.07 rad, φ ≈ π/2 or 3π/2 corresponding to the choice of τ = 1.009 or 2.135 (in the

units of } = 1) respectively. In the discussions of the following two sections, we will be

specifically using this form of 3-term WLGI given by the inequality (4).

4.2.3 COMPARISON BETWEEN WLGI AND LGI WITH RESPECT TO UNSHARP

MEASUREMENT

In the preceding discussions, we have taken the relevant measurements of the observable

Q to be essentially ‘ideal’. Now, if the ‘non-idealness’ of actual measurements has to be

taken into account, a natural question arises as to what effect this would have on the QM

violation of WLGI as compared to that for LGI. In order to address this question, we take

recourse to the formalism of what is known as unsharp measurement [78, 81] which can

be regarded as a particular case of POVM. We discuss unsharp formalism in earlier section.
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With unsharp measurements two time joint probability becomes

P (Q1+, Q2+) = tr(U∆t(
√
F+ρ0(t1)

√
F+

†
)U †∆tF+)

=
1

4
[λ2 cos(2τ) + 2λ cos(2θ) cos2(τ) + λ sin(2θ) sin(2τ) sin(φ)

√
1− λ2 + 1]

P (Q2+, Q3−) = tr(U∆t(
√
F+(U∆tρ0(t1)U †∆t)

√
F+

†
)U †∆tF−)

=
1

4
[2λ sin2(τ)(cos(2θ) cos(2τ) + sin(2θ) sin(2τ) sin(φ))− λ2 cos(2τ)

+ λ
√

1− λ2 sin(2τ)(sin(2τ) cos(2θ)− cos(2τ) sin(2θ) sin(φ)) + 1]

P (Q1−, Q3−) = tr(U2∆t(
√
F−ρ0(t1)

√
F−
†
)U †2∆tF−)

=
1

4
[λ2 cos(4τ)− 2λ cos(2θ) cos2(2τ)− λ sin(2θ) sin(4τ) sin(φ)

√
1− λ2 + 1]

(4.23)

In the above expressions (4.23), for the parameters characterizing the initial state, we now

put θ = 1.07 rad and φ = 3π/2 or π/2. Recall that for these specific choices, as mentioned

towards the end of the preceding section, the QM violation of the 3-term WLGI given by

(4.17) is maximum using the joint probabilities calculated for ideal measurements. Now

with this parameters for unsharp measurement it is found that for λ ≤ 0.69, no violation

of WLGI is possible.

The general form of usual LGI involving n pairs of two-time correlation functions can be

expressed in the following way [44]

− n ≤ Kn ≤ n− 2 for odd n ≥ 3

− (n− 2) ≤ Kn ≤ n− 2 for even n ≥ 4
(4.24)

where Kn = C21 + C32 + C43 + ..... + Cn(n−1) − Cn1, and the correlation function Cij =

〈QiQj〉. Considering unsharp measurements, the correlation function for any initial state

is obtained in the following form

〈QiQj〉unsharp = P (Qi+, Qj+) + P (Qi−, Qj−)− P (Qi−, Qj+)− P (Qi+, Qj−)

= tr(U∆t(
√
F+ρ(ti)

√
F+

†
)U †∆tF+) + tr(U∆t(

√
F−ρ(ti)

√
F−
†
)U †∆tF−)

− tr(U∆t(
√
F−ρ(ti)

√
F−
†
)U †∆tF+)− tr(U∆t(

√
F+ρ(ti)

√
F+

†
)U †∆tF−)

= λ2 cos(2τ) = λ2〈QiQj〉sharp

(4.25)
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where 〈QiQj〉sharp is the correlation function for sharp measurements corresponding to

λ = 1. Using Eq. (4.25) and the result that for any given n, the maximum QM value of Kn

for sharp measurements has been found to be n cos(π/n) [44], it follows that for unsharp

measurements, if the QM predictions are to satisfy the general form of LGI given by (4.24),

the following inequality needs to hold good

λ2n cos(π/n) ≤ n− 2 ⇒ λ ≤

√
n− 2

n cos(π/n)
(4.26)

Note that as n increases, the RHS of (4.26) also increases, thereby implying an increase

of the critical value of λ (denoted by, say, λc) above which, as measurements become more

precise, the QM results can violate the general form of LGI given by (4.24). The minimum

value of λc(=
√

2/3 = 0.81) occurs for n = 3. For n = 4, λc is given by (1/2)1/4 = 0.84

which is the same as the corresponding λc [95] obtained for the Bell-CHSH inequality.

Now, comparing the above mentioned minimum value of λc(= 0.81) for LGI with the

corresponding critical value of λc(= 0.69) for the 3-term WLGI given by (4.17), it is seen

that for the values of λ lying within the range given by 0.69 < λ ≤ 0.81, the QM pre-

dictions can violate WLGI, but will satisfy LGI. In other words, for the range of values of

λ ∈ (0.69, 0.81] corresponding to unsharp or imprecise measurements, the QM violation of

macrorealism can be tested using the 3-term WLGI, but not in terms of LGI. This, therefore,

underscores the efficacy of WLGI and its non-equivalence with LGI. Such a comparison can

be extended for WLGIs involving more than three pairs of two-time joint probabilities. In-

tuitively, though, it can be argued that, as the number of pairs of measurement increases,

the robustness of the QM violation of WLGIs against unsharp measurement is expected to

decrease.

4.3 NO-SIGNALLING IN TIME AND UNSHARP MEASUREMENT

As already mentioned in the previous section, an alternative necessary condition for the

validity of macrorealism has recently been proposed [94] by assuming that the outcome

statistics of a measurement would remain unaffected by any prior measurement. This

condition, referred to as ‘No-Signalling in Time’ (NSIT), is the statistical version of NIM

used in deriving LGI and can be viewed as an analogue of the no-signalling condition for

the spacelike separated measurements used in the EPR-Bohm scenario, with the difference

that while any violation of the latter would violate special relativity, violation of NSIT is not
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inconsistent with special relativity. Now, in order to express NSIT in a mathematical form,

let us again consider a system oscillating in time between two possible states, as discussed

earlier. The probability of obtaining a particular outcome, say, +1 for the measurement of

a dichotomic observable Q at an instant, say, t2, without any earlier measurement being

performed, be denoted by P (Q2 = +1). NSIT requires that P (Q2 = +1) should be the

same even when an earlier measurement of, say, Q is made at an instant, say, t1. In other

words, if we denote by P (Q2 = +1|Q1 = ±1) the probability of obtaining an outcome +1

for the measurement of Q at the instant t2 when an earlier measurement of Q has been

performed at t1 having an outcome ±1, NSIT can be expressed as the equality condition

given by P (Q2 = +1) = P (Q2 = +1|Q1 = ±1) which implies that

P (Q2 = +1) = P (Q1+, Q2+) + P (Q1−, Q2+) (4.27)

where the terms on the RHS of Eq. (4.27) are the relevant joint probabilities.

Now, pertaining to the two-state oscillation between the states |A〉 and |B〉 with the

state ρ0(t1) = |ψ0〉〈ψ0| at the instant t1 where |ψ0〉 = cos θ|A〉 + exp(iφ) sin θ|B〉, the QM

violation of the condition given by Eq. (4.27) for ideal measurements can be obtained as

follows, based on calculations similar to that involving Eq. (4.21) as discussed earlier

P (Q2 = +1)− [P (Q1+, Q2+) + P (Q1−, Q2+)]

= tr(U∆tρ0(t1)U †∆tP+)− tr(U∆t(P+ρ0(t1)P+)U †∆tP+)

− tr(U∆t(P−ρ0(t1)P−)U †∆tP+)

=
1

2
sin(2τ) sin(2θ) sin(φ)

(4.28)

It can be seen from Eq. (4.28) that, for sharp or ideal measurements, the maximum QM

violation of the NSIT condition as given by Eq. (4.27) is 1/2 corresponding to the choices

θ = π/4, φ = π/2 and τ = ∆E∆t = π/4 (in the units of } = 1). Next, taking into account

the unsharpness of measurements involved, the QM violation of the NSIT condition of the

form (4.27) is obtained as follows on the basis of calculations similar to that leading to
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Eqs. (4.23).

P (Q2 = +1)− [P (Q1+, Q2+) + P (Q1−, Q2+)]

= tr(U∆tρ0(t1)U †∆tF+)− tr(U∆t(
√
F+ρ0(t1)

√
F+

†
)U †∆tF+)

− tr(U∆t(
√
F−ρ0(t1)

√
F−
†
)U †∆tF+)

=
1

2
λ sin(2τ) sin(2θ) sin(φ)(1−

√
1− λ2).

(4.29)

It is then seen from Eq. (4.29) that, while the magnitude of the QM violation of NSIT

depends on the value of the unsharpness parameter λ (this violation is maximum for λ = 1

corresponding to sharp measurement), a particularly noteworthy feature is that unless the

state at the instant t1 is such that either sin(2θ) or sin(φ) vanishes, the QM violation of

NSIT persists for any non-zero value of λ, i.e., for any arbitrarily unsharp measurement.

This shows remarkable robustness of the QM violation of NSIT with respect to unsharp or

non-ideal measurements.

4.4 CONCLUDING REMARKS AND FUTURE PERSPECTIVE

We have shown that optimal violation of the Leggett-Garg inequality [4] is allowed by

quantum theory in the context of a suitably adapted measurement scheme for a system

possessing arbitrary spin. It may be noted that whereas we obtain maximal violation of

macrorealism for an arbitrary spin system, the same Peres-Gisin observable [90] used in

the case of spatial correlations does not lead to maximal violation of the corresponding

local realist inequality for finite integral spin systems. We have further shown how coarse

graining of the measurement process through unsharp observables leads to the satisfac-

tion of LGI. The form of coarse graining used here is quantitative, as different from the

coarse-graining employed in a similar context earlier [42].

Three different necessary conditions for the validity of macrorealism are considered, in-

cluding the two earlier proposed conditions namely LGI, NSIT, and the alternative condi-

tion WLGI proposed in this chapter. Comparison between these three conditions in terms of

the robustness of their respective QM violations against unsharpness of the measurements

is discussed. Emergence of classicality in terms of satisfying the macrorealist inequality

WLGI corresponds to greater imprecision or unsharpness of measurements than that for

LGI. Next, coming to NSIT, interestingly, we find that its QM violation occurs whatever be

the unsharpness of the relevant measurements. For further research it be interesting to
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make a comprehensive comparison of the results of our present study with that using dif-

ferent characterizations of coarse-grained measurements that are invoked while probing

the emergence of classicality within quantum theory under imprecise measurements.
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CHAPTER 5

QUANTUM-CLASSICAL TRANSITION

In this chapter we concentrate on the issue of quantum-classical transition in more details

basing on two works [96, 97]

i) Quantum mechanical violation of macrorealism for large spin and its robustness against

coarse-grained measurements, S Mal, D Das, D Home, Phys. rev. A 94, 062117 (2016).

ii) Uncovering a Nonclassicality of the Schrdinger Coherent State up to the Macro-Domain, S

Bose, D Home, S Mal, arXiv:1509.00196(2015).

It may be recalled that among the various approaches suggested for addressing the issue

of classical limit of QM [7, 98, 99, 100, 101, 102, 103, 104, 105], there are two strands

of prevalent wisdom that are relevant to the results obtained in this paper. One is that

classical physics emerges from the predictions of QM in the so called ‘macroscopic’ limit

when either the system under consideration is of high dimensionality, for example, large

spin system, or if a low dimensional system is of large mass, or if it involves large value

of any other relevant parameter such as energy. The other is that classicality arises out of

QM under the restriction of coarse grained measurements for which one can empirically

resolve only those eigenvalues of a relevant observable that are sufficiently well separated;

in other words, this view point stipulates that the limits of observability of quantum effects

in an appropriate ‘macroscopic limit’ determine the way the classicality emerges [42, 106].

As regards the first approach mentioned above, we note that counter-examples question-

ing it have been pointed out. For instance, in the case of the Bell-EPR scenario, it has been

shown that quantum features in the sense of violating local realist inequalities, persist in
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the ‘macroscopic’ limit such as for the large number of constituents of the entangled sys-

tem [107, 108], or for the large dimensions of the constituents of the entangled system

[90, 109]. Further, for the Bell-EPR scenario, the QM violation of the relevant local realist

inequalities seems to increase even in the limit of large numbers of particles and large

magnitude of spins considered together [110]. On the other hand, in the case of temporal

correlations for which the violation of macrorealism (MR) is probed through the violation

of LGI, all the relevant studies mentioned earlier [39, 88, 111] reveal that, irrespective of

the nature of measurements, the QM violation of LGI persists for arbitrary large value of

spin of the system under consideration.

First we discuss on system with arbitrary spin and emergence of classicality with a mea-

surement of varying degree of coarseness in conjunction with fuzziness of measurement.

In the second work we consider oscillator system with dichotomic position measurement

and investigated quantum-classical transition with increasing mass.

5.1 VIOLATION OF MR FOR LARGE SPIN AND COARSE-GRAINED

MEASUREMENTS

As regards the second approach mentioned above, it has been shown [42, 106] that for

a class of Hamiltonians governing the time evolution, if one goes into the limit of suffi-

ciently large spins, but can experimentally only resolve eigenvalues which are separated

by much more than the intrinsic quantum uncertainty, then the measurement outcomes

appear to be consistent with that of classical laws. Along this line of research there had

been a number of investigations giving more insight into the nature of coarse graining of

the measurements and emergence of classicality or persistence of quantumness. In [112]

micro-macro nonlocal correlation was established. Quantum violation of local realism has

been shown [113] for entangled thermal states with very low detection efficiency, i.e., for

extreme coarse grained measurement available. Large amount of violation of Bell inequal-

ity has been obtained [114] with human eye as detector in a micro-macro experiment and

this violation is robust against photon loss. Precise (non coarse grained) measurements

are shown [115] to be essential for demonstrating quantum features at the mesoscopic

or macroscopic level and observing nonlocality becoming more difficult with increasing

system size.
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In the following Section, we explain the relevant features of the system under considera-

tion (an arbitrary spin system in a uniform magnetic field), the specific type of measure-

ment scheme used, its generalisation and the way the fuzziness of the measurements is

modelled by unsharp measurement. The key results obtained using LGI and WLGI are

discussed, which is followed by Section pertaining to NSIT. Then the key results obtained

using LGI, WLGI and NSIT by generalising the scheme by which different measurement

outcomes are clubbed together into two different groups are discussed using projective

measurement, as well as, using unsharp measurement.

5.1.1 SETTING UP OF THE MEASUREMENT CONTEXT

Consider a QM spin j system in a uniform magnetic field of magnitude B0 along the x

direction. The relevant Hamiltonian is (~ = 1):H = ΩJx. where Ω is the angular preces-

sion frequency (∝ B0) and Jx is the x component of spin angular momentum. Consider

measurements of the z component of spin (Jz) whose eigenvalues are denoted by m. The

measurement scheme used here [39] has the following features:

• The quantity Q is such that Q = −1 when m = −j and for any other value of m ranging

from −j+1 to +j, Q = +1. We will denote by Qi and mi the value of Q and the outcome of

Jz measurement respectively at instant ti. Thus Qi = + (i.e. Qi = +1) means mi = −j + 1

or, −j + 2 or, ... j − 1 or, j and Qi = − (i.e. Qi = −1) means mi = −j.
• We initialize the system so that at t=0, the system is in the state | − j; j〉 where |m; j〉
denotes the eigen state of Jz operator with eigenvalue m.

• Consider measurements of Q at times t1, t2 and t3 (t1 < t2 < t3) & set the measurement

times as Ωt1 = Π and Ω(t2 − t1) = Ω(t3 − t2) = Π
2
. For any j, this choice of measurement

times may not give the maximum quantum violation of LGI, WLGI or NSIT. However, this

choice suffices to give an idea about the nature of QM violations of the relevant inequali-

ties for large j.

• We have also adopted a measurement scheme which is more general than described

earlier and more natural in the context of emergence of classicality at the macroscopic

limit with coarse grained measurement. This is described bellow:

Q = −1 for m = −j, ...,−j + x,

Q = +1 for m = −j + x+ 1, ...,+j, where 0 < x ≤ integer part (j) and x being integer.

The asymmetry in the number of measurement outcomes clubbed together decreases and,
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hence, the degree of coarse graining of the measurement increases with an increasing

value of x. Here for x = 0, the aforementioned scheme is reproduced. x = integer part

(j) denotes the most macroscopic grouping scheme in the sense of describing the perfect

coarse graining of the measurements.

Next, we use the notion of unsharp measurement in the context of treating fuzziness of

the measurement. Unsharp measurement, a form of positive operator valued measurement

(POVM), is well studied in the quantum formalism. In ideal sharp measurement, the

probability of obtaining a particular outcome, say m in case of Jz measurement, and the

corresponding post-measurement state are determined by the projector Pm = |m; j〉〈m; j|.
On the other hand, in the case of unsharp measurement, the probability of an outcome and

the corresponding post-measurement state are determined by the effect operator, which is

defined as

Fm = λPm + (1− λ)
I
d

(5.1)

where λ is the sharpness parameter, where 0 ≤ λ ≤ 1, Pm is the projector onto the state

|m; j〉, I is the identity operator and d is the dimension of the system (for spin j system,

d = 2j + 1). Here (1 − λ) denotes the amount of white noise present in any unsharp

measurement. Given the above specification of the effect operator, the probability of an

outcome, say m, is given by Tr(ρFm) for which the post-measurement state is given by,

(
√
Fmρ
√
Fm
†
)/Tr(ρFm), ρ being the state of the system on which measurement is done.

5.1.2 ANALYSIS USING LGI AND WLGI
For the purpose of the present section, we shall use the following form of 3-term LGI [44]

and WLGI discussed earlier.

KLGI = C12 + C23 − C13 ≤ 1 (5.2)

where Cij = 〈QiQj〉 is the correlation function of the variable Q at two times ti and tj.

KWLGI = P (Q2+, Q3+)− P (Q1−, Q2+)− P (Q1+, Q3+) ≤ 0 (5.3)

Similarly, other forms of WLGI involving any number of pairs of two-time joint probabil-

ities can be derived by using various combinations of the observable joint probabilities.
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Here we consider the specific form of the three term WLGI mentioned above (Eq.(5.3)).

For projective measurement: In order to calculate the expectation values and joint probabil-

ities appearing in the aforementioned forms of LGI and WLGI, we proceed by writing the

relevant time evolution operators as, for example, the time evolution operator from the

initial time t = 0 to the instant of first measurement t = t1, U(t1− 0) = e−iπJx = R2 (where

R = e−i
π
2
Jx), and all the subsequent measurements are equispaced in time. Typically, any

joint probability, for example, P (Q2+, Q3+) for a spin j system is calculated using the

Wigner D-matrix formalism and is of the form given by,

P (Q2+, Q3+) = 1− (4j)!

42j[(2j)!]2
+

1

24j
− 1

22j
(5.4)

Using such expressions, both KLGI and KWLGI can be evaluated. We then obtain in

Eq.(5.2) and Eq.(5.3) respectively

KLGI = 3 + 41−2j − 41−j − 21−4j(4j)!

((2j)!)2
(5.5)

KWLGI = 1 + 4−2j − 4−j − 4−2j(4j)!

((2j)!)2
(5.6)

QM violations of LGI and WLGI are quantified by (KLGI − 1) and (KWLGI − 0) respectively.

It is found that both these violations increase with increasing values of j. Specific results

showing this feature for j = 1, 10, 100 are given in Table I. From Eqs. (5.5) and (5.6) it can

be seen that for j → ∞, (KLGI − 1) → 2 [39] and (KWLGI − 0) → 1. Thus, in both these

cases, the algebraic maxima of both KLGI and KWLGI are attained for infinitely large spin

value of the system under consideration.

For unsharp measurement: Next, considering in the context of unsharp measurement,

the expression of a typical joint probability distribution is of the form given by,

P (Q1+, Q2−) =

j∑
k=−j+1

Tr[F−jU∆t2

√
FkU∆t1ρiU

†
∆t1

√
Fk
†
U †∆t2 ] (5.7)

where ρi = initial state of the system = | − j; j〉〈−j; j|, U∆t1 = U(t1 − 0) and U∆t2 =

U(t2 − t1). Now, using the form of the effect operator defined earlier given by Eq.(5.1),

Hamiltonian mentioned earlier and using Wigner D Matrix formalism, one can obtain the
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FIG. 5.1: Four tables showing comparisn between violation of LGI and WLGI considering different
spin systems, unsharp measurement and initial mixed state.

joint probability pertaining to our measurement context as the following

P (Q1+, Q2−) =
x2λ

22j
+2xλ

√
1− λ
2j + 1

1

22j
+
λ(1− λ)

2j + 1

2j

22j
+
x2(1− λ)

2j + 1
+2x(

1− λ
2j + 1

)
3
2 +(

1− λ
2j + 1

)22j,

(5.8)

where x = (
√

2jλ+1
2j+1

−
√

1−λ
2j+1

). Using such joint probabilities, one can obtain

KLGI =
1

(1 + 2j)2((2j)!)2
16−j((16j + 2(−2 + 16j)λ2 + 4j2(16j − 41+jλ+ 2(2 + 16j)λ2)

−4λ(−2 + 4j + 2
√

1− λ
√

1 + 2jλ− 21+2j
√

1− λ
√

1 + 2jλ+ 16j
√

1− λ
√

1 + 2jλ)−

4j(16j + 2λ(−2 + 21+2j − 21+4j + 2
√

1− λ
√

1 + 2jλ− 21+2j
√

1− λ
√

1 + 2jλ

+16j
√

1− λ
√

1 + 2jλ)))((2j)!)2 + 2(1 + 2j)λ(−2 + λ− 2jλ+ 2
√

1− λ
√

1 + 2jλ)(4j)!)(5.9)
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5.1 Violation of MR for large spin and coarse-grained measurements

and

KWLGI =
1

(1 + 2j)2((2j)!)2
16−j((4j2λ(−4j + λ+ 16jλ)− λ(−2 + 4j − 16j + λ

+2
√

1− λ
√

1 + 2jλ− 21+2j
√

1− λ
√

1 + 2jλ+ 21+4j
√

1− λ
√

1 + 2jλ)

−2j(16j + λ(−2 + 21+2j − 3(16j) + 2
√

1− λ
√

1 + 2jλ− 21+2j
√

1− λ
√

1 + 2jλ

+21+4j
√

1− λ
√

1 + 2jλ)))((2j)!)2 + (1 + 2j)λ(−2 + λ− 2jλ+ 2
√

1− λ
√

1 + 2jλ)(4j)!).(5.10)

Now, for a particular value of j, the ranges of λ for which the QM violations of LGI and

WLGI persist differ with the range for WLGI being greater than that for LGI. Moreover,

the robustness of QM violations of both LGI and WLGI with respect to unsharpness of the

measurement increase with increasing values of j. This is illustrated by the results given in

Table II, which indicate that the ranges of λ for which the QM violations of LGI and WLGI

persist increase with increasing values of j.

Most interestingly, for j →∞, we get, for the QM violations of LGI and WLGI

(KLGI − 1)→ 2λ2 (5.11)

and

(KWLGI − 0)→ λ2 (5.12)

which show that the ranges for which the QM violations of LGI and WLGI persist become

equal to (0, 1]. On the other hand, for any j, magnitude of the QM violation of LGI (WLGI)

decreases for decreasing values of λ. This is illustrated by the results shown in Table III.

Thus it is shown that if one adopts the type of measurement scheme used here, in the

macrolimit characterized by infinitely large spin values as well as for any non-zero value

of the sharpness parameter (i.e. for an arbitrary degree of fuzziness of the relevant mea-

surement), the QM violation of MR persists for both LGI and WLGI.

Let us investigate whether such kind of behaviour persists when initial state becomes

mixed which is the more realistic situation involved in actually testing the macrolimit of

quantum mechanics. Here, instead of taking pure initial state | − j; j〉 at t=0, we initialize

the system so that at t=0, the system is in the state ρ given by,

ρ = v| − j; j〉〈−j; j|+ (1− v)
I
d

(5.13)
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5.1 Violation of MR for large spin and coarse-grained measurements

FIG. 5.2: Two table showing violation of LGI and WLGI for different mixed initial states and vio-
lation of NSIT for a given pure state.

where, v is the visibility parameter which changes the pure state into a mixed state and

(1− v) denotes the amount of white noise present in the state | − j; j〉 (0 ≤ v ≤ 1), d is the

dimension of the system, I
d

is the density matrix of completely mixed state of dimension

d. The minimum values of v for which QM violates different necessary conditions of MR

signify the maximum amounts of white noise that can be present in the given state for the

persistence of the QM violation of the relevant necessary condition of MR, and this value

of v is known as the threshold visibility (vth) pertaining to the given necessary condition of

MR.

We also find for j →∞, the QM violations of LGI and WLGI are given by

(KLGI − 1)→ 2v (5.14)

and

(KWLGI − 0)→ v (5.15)

These results clearly show that for very large j and for any amount of mixedness intro-

duced in the initial state of the system, the QM violation of MR persists using LGI or WLGI.

5.1.3 ANALYSIS USING THE NSIT CONDITION

According to the NSIT condition, the measurement outcome statistics for any observable

at any instant is independent of whether any prior measurement has been performed. It is

discussed in chapter four in detail and the NSIT condition is given by an equality i.e.,

P (Q3 = −1)− [P (Q2 = +1, Q3 = 1) + P (Q2 = −1, Q3 = −1)] = 0. (5.16)
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FIG. 5.3: Four table showing violation of NSIT considering initial mixed state and unsharp mea-
surement and violation of LGI, WLGI for coarse-grained measurements.

QM violation of NSIT is quantified by the non-vanishing value of the LHS of Eq.(4.16).

For projective measurement: For spin j system, for H = ΩJx, using the measurement

scheme discussed in previous section and the choice of measurement times as well as of

the initial condition mentioned there, we obtain, using the Wigner D Matrix formalism,

P (Q3 = −1)− [P (Q2 = +1, Q3 = −1) + P (Q2 = −1, Q3 = −1)] = 1− (4j)!

42j[(2j)!]2
. (5.17)

It is found that the QM violation of NSIT increases with increasing values of j.

For j →∞, the QM violation of NSIT→ 1, which is the algebraic maximum of the LHS of

the NSIT condition.

For unsharp measurement: For ‘unsharp measurement’ defined in terms of the sharpness

parameter λ for spin j system described earlier, the LHS of Eq.(4.16) becomes

P (Q3 = −1)− P (Q2+, Q3−)− P (Q2−, Q3−) =
2−4jλ

(1 + 2j)((2j)!)2
[2 + (−1 + 2j)λ−

2
√

1− λ
√

1 + 2jλ][16j((2j)!)2 − (4j)!].(5.18)
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5.1 Violation of MR for large spin and coarse-grained measurements

It is then found that for an arbitrary value of spin j, the QM violation of NSIT persists for

any non-zero value of the sharpness parameter λ.

For j →∞, for any λ, LHS of the NSIT condition is given by

P (Q3 = −1)− [P (Q2 = +1, Q3 = −1) + P (Q2 = −1, Q3 = −1)]→ λ2 (5.19)

Thus, even in the ‘macrolimit’ characterized by j → ∞, for any non-zero value of λ, the

QM violation of MR persists using NSIT.

5.1.4 LGI, WLGI, NSIT UNDER GENERALISED COARSE-GRAINED MEASURE-

MENT

Here we generalise the scheme by which different measurement outcomes are clubbed

together into two groups. In this case Q = −1 for m = −j, ...,−j + x, and Q = +1 for

m = −j+x+ 1, ...,+j, where 0 < x ≤ integer part(j) and x being integer. Here the degree

of coarse graining of the measurement increases with increase in x. Any fixed value of x

denotes a particular grouping scheme.

We initialize the system so that at t = 0, the system is in the state | − j; j〉. We take the

aforementioned Hamiltonian and choices of measurement times.

For projective measurement: Here joint probabilities appearing in the aforementioned

particular form of LGI, WLGI or NSIT are calculated for ideal sharp measurement using

Wigner D Matrix formalism.

From numerical results it is found that for any j (also for arbitrarily large value), QM vi-

olation of LGI exists for x ≤ integer part(j − 1) and no violation occurs for x = integer

part(j); whereas QM violations of WLGI and NSIT exist for any value of x, where x ≤
integer part(j). This indicates that QM violations of different necessary conditions of MR

persist for very large degree of coarse graining of the measurement. However, the magni-

tudes of the violations become smaller for increasing values of x, or increasing the degree

of coarse graining of the measurement.

For a fixed and finite value of x, magnitudes of QM violations of LGI, WLGI or NSIT become

larger for increasing values of j. For arbitrarily large values of j ( j
x
>> 1), magnitudes of

QM violations of LGI, WLGI or NSIT approach their respective algebraic maxima. How-

ever, the QM violations of different necessary conditions of MR approach their respective
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5.2 System with large mass

algebraic maxima slowly as one increases x. These results are shown in Table IX.

For unsharp measurement: Now, instead of projective measurement, let us employ un-

sharp measurement of spin-z component observable. From numerical results it is observed

that, for any j, the ranges of the sharpness parameter for which the QM violations of LGI

and WLGI persist become smaller for increasing values of x, or increasing the degree of

coarse graining of the measurement. And for a fixed and finite value of x, the ranges of the

sharpness parameter for which the QM violations of LGI and WLGI persist become larger

for increasing values of j and for arbitrarily large values of j ( j
x
>> 1), both the ranges

approach (0, 1]. However, these ranges approach (0, 1] slowly as one increases x. This is

shown in Table X.

Interestingly, The range of the sharpness parameter for which the QM violation of NSIT

persists for arbitrary values of j (including arbitrarily large values of j) and arbitrary val-

ues of x is (0, 1]. This indicates that, surprisingly, for any particular scheme of branching

of the outcomes (i.e. for a fixed value of x), for arbitrarily large values of j ( j
x
>> 1), QM

violations of all the necessary conditions of MR persist for almost any nonzero value of the

sharpness parameter.

5.2 SYSTEM WITH LARGE MASS

While the original motivation that led to LGI was to use it for testing the possible lim-

its of QM in the macroscopic regime, e.g., in terms of suitable experiments involving the

rf-SQUID device [116], in recent years, a variety of theoretical and experimental studies

(reviewed, for example, by Emary et al. [44]) have sought to bring out various fundamen-

tal implications of LGI and its variants [42, 117, 118], as well as have probed aspects of LGI

pertaining to different types of systems, ranging from, say, solid-state qubits [85, 119], nu-

clear spins [120], photons [87], elecrons [121], to oscillating kaons and neutrinos [122].

Against this backdrop, in the present section we explores a novel application of LGI using

the archetypal example of a linear harmonic oscillator (LHO) which has well defined clas-

sical as well as quantum descriptions. Note that systems used so far for probing LGI have

been essentially qubits or systems that are isomorphic to qubits. In contrast, the LHO ex-

ample we consider involves continuous variables. Therefore, to apply LGI in this context,

discretization is needed which is ensured by, say, considering coarse-grained measurement

of a type that would determine which one of the halves of the region of oscillation, the
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5.2 System with large mass

oscillating particle is in at any given instant, without any further information about the

position of the particle. Then, invoking such dichotomic measurements, it turns out that

the LHO example serves to demonstrate the power of LGI in revealing a testable non-

classical feature of the Schrödinger coherent state (non-spreading wave packet with mini-

mum position-momentum uncertainty) whose quantum dynamical behaviour is similar to

that of a classical oscillator and is regarded as providing the best possible classical-like

description of LHO in terms of QM. Using this coherent state, the extent to which for even

larger values of mass, the QM violation of LGI persists is investigated.

5.2.1 LGI AND THE NOTION OF NRM
In the one-dimensional LHO example, the temporal evolution of a particle can be regarded

as oscillation between two states, one of which corresponds to the particle being found

within, say, the negative half of the region of oscillation (x = 0 to x→ −∞) which we call

the state 1, while the state 2 pertains to the particle being found within the positive half

(x = 0 to x → +∞). Let Q(t) be an observable quantity such that, whenever measured,

it is found to take a value +1(−1) depending on whether the system is in the state 1(2).

then following LG test discussed earlier one can construct temporal correlations Cij ≡
〈Q(ti)Q(tj)〉 and LGI

C ≡ C12 + C23 + C34 − C14 ≤ 2 (5.20)

Cijs can be written as

C12 = P++(t1, t2)− P+−(t1, t2) + P−−(t1, t2)− P−+(t1, t2) (5.21)

where P++(t1, t2) is the joint probability of finding the particle in the state 1 at both the

instants t1 and t2; similarly, for P+−(t1, t2), P−−(t1, t2), P−+(t1, t2). Note that the derivation

of LGI requires essentially the first measurement of each such pair to satisfy NIM for macro-

observable. This can be ensured through the NRM procedure by arranging the measuring

setup so that if, say, the probe is triggered, Q(t1) = +1, while if it is not, Q(t1) = −1,

thereby ensuring in the latter case that while the untriggered probe provides information

about the value of Q, there is no interaction occurring between the probe and the mea-

sured particle; in other words, the condition of NIM is then satisfied. Now, if the results of

those runs are only used for which Q(t1) = −1, followed by the measurement of Q at t2,

discarding the results of the rest runs, these results can be used for determining the joint
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probabilities P−+(t1, t2) and P−−(t1, t2). Similarly, for determining the other two joint prob-

abilities P+−(t1, t2) and P++(t1, t2) occurring in C12, the measuring setup can be inverted

so that a value of Q(t1) = −1 triggers the probe, while for Q(t1) = +1, it does not. In this

way, one can determine C12 and, thus, all the 2-time correlation functions occurring in the

LGI by ensuring NIM through the use of the NRM procedure for the first measurement of

any pair.

5.2.2 LGI USING LHO COHERENT STATE

Having clarified the relevant basics, we now proceed to discuss the details of a specific

application of LGI pertaining to the Schrödinger coherent state of LHO. Let us consider the

following initial Gaussian wave packet

ψ(x, t = 0) =

√
1√

2πσ0

exp

(
− x2

4σ2
0

+
ip0x

}

)
(5.22)

which is peaked at x = 0 with the initial momentum expectation value p0 (peak mo-

mentum), and has width σ0 which is taken to be σ0 =
√

~
2mω

where ω is the angular

frequency of oscillation. Under the LHO potential, the above ψ(x, 0) evolves into ψ(x, t) is

obtained in the following way. Propagator for the motion is given by

K (x′, t′ = 0;x, t) =

√
mω

2πi} sinωt
exp

[
imω

2} sinωt
{(x′2 + x2) cosωt− 2xx′}

]
(5.23)

Then the time-evolved wave packet at the instant t is given by

ψ(x, t) =

∫ ∞
−∞

K(x′, t′ = 0;x, t)ψ(x′, 0)dx′ =

√
1√

2πσt
exp (−

√
mω

A(t) +Bx+ C(t)x2

(2})3/2σt
).(5.24)

where

A(t) =
i}p2

0

(mω)2
sinωt, B = −2ip0}

mω
,C(t) = } cosωt+ i} sinωt, σt =

i sinωt+ cosωt√
2mω/}.

(5.25)
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whence the probability density is given by

|ψ(x, t)|2 =

√
mω

}π
exp

(
−mω

(x− p0

mω
sinωt)2

}

)
(5.26)

which oscillates without spreading or changing shape, while its peak follows classical mo-

tion, and ∆x∆p = ~/2 at all instants. Such a wave packet is known as the Schrödinger

coherent state [123] - a much-discussed remarkable example of a quasi-classical state in

quantum mechanics. Now, in order to apply LGI in this context, we consider coarse-grained

measurement of a type, as mentioned earlier, that determines at any instant whether the

oscillating particle is in the region between x→ −∞ and x = 0 (corresponding to the mea-

surement outcome +1) or is in the region between x = 0 and x → +∞ (corresponding

to the measurement outcome -1). Such a measurement can be represented by the di-

chotomic localization operator Ô =
∫ 0

−∞ |x〉〈x|dx−
∫∞

0
|x〉〈x|dx which has two eigenstates∫ 0

−∞〈x|ψ〉|x〉dx and
∫∞

0
〈x|ψ〉|x〉dx corresponding to the eigenvalues +1,−1 respectively.

Note that the probability of obtaining the outcome +1(-1) for such a measurement at an

instant, say, t1, is given by

P+(t1) =

∫ 0

−∞
|ψ(x, t1)|2dx =

1

2

(
1− Erf(

〈x(t1)〉√
2|σt1|

)

)
(5.27)

P−(t1) =

∫ ∞
0

|ψ(x, t1)|2dx =
1

2

(
1 + Erf(

〈x(t1)〉√
2|σt1|

)

)
(5.28)

The Error Function Erf(t1) = 2√
Π

∫ t1
0
exp(−z2)dz, σt1 = (i~ sinωt + 2mωσ2

0 cosωt)/2mωσ0,

and 〈x(t1)〉 = (p0/mω) sinωt1. Next, given the result of the above measurement at the

instant t1 to be +1(-1), for either of the two outcomes obtained using the NRM procedure,

one then considers the post-measurement state ψPM± (x, t1) that evolves, followed by a mea-

surement at the instant t2 corresponding to the operator Ô. For this latter measurement,

the conditional probability of obtaining the outcome +1, contingent upon the outcome

+1(-1) obtained for the measurement of Ô at the earlier instant t1, is given by

P±/+(t1, t2) =

∫ 0

−∞
|ψPM± (x, t2)|2dx (5.29)

while such a conditional probability for the outcome -1 at the instant t2 is of the form

P±/−(t1, t2) =

∫ ∞
0

|ψPM± (x, t2)|2dx (5.30)
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where ψPM± (x, t2) is the time-evolved normalized form of the post-measurement state.

This is obtained in the following way. Depending on the outcome +1(−1) of the measure-

ment corresponding to the operator Ô =
∫ 0

−∞ |x〉〈x|dx −
∫∞

0
|x〉〈x|dx at the instant t1, the

post-measurement state (not normalized) is given by

|ψPM+ (t1)〉 =

∫ 0

−∞
ψ(x′, t1)|x′〉dx′, |ψPM− (t1)〉 =

∫ +∞

0

ψ(x′, t1)|x′〉dx′. (5.31)

Subsequently, ψPM± (t1) evolves up to the instant t2 by the propagator K(x′, t′ = t1;x, t2)

which is of the same form as that given by Eq. (1). The time-evolved normalized form of

the post-measurement state at the instant t2 is then given by

ψPM± (x, t2) = (1/N±)

∫ ∞
−∞

K(x′, t1;x, t2)ψPM± (x′, t1)dx′

= (1/N±)
1

2
√√

2πσt2

(1 + Erf [
χ√
ξ

]) exp

[
−
√
mω

A(t2) +Bx+ C(t2)x2

(2})3/2σt2

]
(5.32)

where A(t2), B, C(t2), and σt2 are respectively the same as that given by Eqs. (3), (4), (5)

and (6), except that t is replaced by t2, while

χ = −
√
mωB

(2})3/2σt2
− imωx

2} sinω(t2 − t1)
, ξ =

√
mωC(t2)

(2})3/2σt2
− imω cosω(t2 − t1)

2} sinω(t2 − t1)
(5.33)

and N± is the normalisation constant at the instant t2, given by N± =
∫∞
−∞ |ψ

PM
± (x, t2)|2dx.

Using Eqs. (5.27) - (5.30), for suitable choices of the relevant parameters, one can thus

compute value of LGI expression. Note that in our setup, the key parameters are m, p0 and

ω. Suitably choosing the values of m, p0, ω while taking the temporal intervals to be the
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TAB. 5.1: LGI violation with increasing mass.

m(amu) σ0(m) p0(kgm/s) v0(m/s) ACl(m) C
10 3.9× 10−8 3.3× 10−24 2× 102 10−4 2.62
103 3.9× 10−9 3.3× 10−23 2× 10 10−5 2.58
106 1.2× 10−10 3.3× 10−21 2.0 10−6 2.50
107 3.8× 10−11 3.3× 10−20 2.0 10−6 2.34
108 1.2× 10−11 3.3× 10−20 2× 10−1 10−7 2.54
109 3.8× 10−12 3.3× 10−19 2× 10−1 10−7 2.35
1010 1.2× 10−12 3.3× 10−21 2× 10−4 10−10 2.70
1012 1.2× 10−12 3.3× 10−19 2× 10−4 10−10 2.70
1015 3.9× 10−15 3.3× 10−18 2× 10−6 10−12 2.70
1018 1.2× 10−16 3.3× 10−16 2× 10−7 10−13 2.70
1020 1.2× 10−17 3.3× 10−15 2× 10−8 10−14 2.65

same, i.e., t2 − t1 = t3 − t2 = t4 − t3 = ∆t, and by numerically integrating the relevant

integrals occurring in Eqs.(5.27) - (5.30), the key results of the quantitative studies are

presented in the Tables. Here it needs to be mentioned that for an arbitrarily given m, p0

and ω, by varying the choices of the time interval ∆t and the first instant of measurement

t1, it is found that the maximum value of C on the LHS of the inequality (1) is attained

when ∆t is chosen within the neighbourhood of T/4 or 3T/4, and t1 is slightly larger than

0 or is within the neighbourhood of T/2, where T is the time period of oscillation. Note

that for computing all the results given in the Tables I - III, we have chosen the same

values of ∆t = 2.4 × 10−6s and t1 = 1.5 × 10−6s where ∆t is chosen close to 3T/4 and

t1 is close to T/2 with T = 3.14 × 10−6s which corresponds to ω = 2 × 106Hz taken to

be the same for evaluating all the results given in the Tables It is found that for p0 = 0,

LGI is always satisfied. On the other hand, by appropriately choosing p0, it is possible to

obtain a significant amount of QM violation of LGI. Note that appreciable QM violations

of LGI are found by suitable choices of p0 as given in Table I for, say, masses 10 amu −1012

amu, corresponding to which the respective values of ACl (pertaining to the maximum

QM violation of LGI obtained for a given mass) range from 10−4m to 10−10m(for typical

parameter of optically levitated system). If the mass is further increased, it is found that

in order to obtain significant QM violation of LGI, p0 needs to be chosen such that the

corresponding ACl becomes much smaller. Also, as m increases, the required value of v0

(initial peak velocity of the wave packet) for showing the QM violation of LGI becomes

increasingly smaller, as can be seen from Table I. Thus, it is evident that in our example,

although theoretically one can obtain the QM violation of LGI for any given m and ω by
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m(amu) σ0(m) v0(m/s) ACl(m) C
102 1.2× 10−8 2× 102 10−5 2.8
103 3.8× 10−9 2.0 10−6 2.74
104 1.2× 10−9 2× 10−1 10−7 2.65
105 3.8× 10−10 10−2 10−8 2.54
106 1.2× 10−10 10−3 10−9 1.56

TAB. 5.2: Taking fixed values of the angular frequency of oscillation ω = 2 × 106Hz and the initial peak
momentum (p0) of the coherent state wave packet to be p0 = 3.3× 10−24kgm/s, as the values of
mass (m) are increased, gradual decrease of the QM violation of LGI is shown through decreasing
values of C.

m(amu) p0(kgm/s) v0(m/s) σ0(m) ACl(m) C
103 3.32× 10−25 2× 10−1 3.9× 10−9 10−7 2.54

3.32× 10−24 2 3.9× 10−9 10−6 2.73
3.32× 10−23 2× 10 3.9× 10−9 10−5 2.6
1.56× 10−22 102 3.9× 10−9 5× 10−5 2.25
3.32× 10−22 2× 102 3.9× 10−9 10−4 1.99

TAB. 5.3: Taking a fixed value of massm = 103amu, for increasing values of the intial peak momentum (p0)
of the coherent state wave packet that correspond to increasing values of the classical amplitude
(ACl) of oscillation, the respective computed QM values of the LHS (C) of the LGI inequality
(1) are shown which indicate a gradual decrease in the QM violation of LGI as the value of ACl
increases, and eventually LGI is satisfied.

suitably choosing p0, actual testability of this violation becomes gradually impracticable for

sufficiently large mass. The results given in Table II show that if by keeping the parameters

p0, ω fixed, one increases the mass m, the QM violation of LGI gradually diminishes, and

eventually for sufficiently large mass, LGI is satisfied; i.e., C < 2. (c) For given values of

m and ω, if p0 is increased, the corresponding ACl is also increased, the QM value of C

is found to be gradually decreasing, and eventually C < 2 for appropriately large p0. In

other words, given m and ω, for larger value of classical amplitude of oscillation (ACl),

QM satisfies LGI. This is illustrated by the results given in Table III.

The results discussed above, therefore, serve to highlight the efficacy of LGI in not only

revealing nonclassicality of the oscillator coherent state, but also in exploring the extent

to which such nonclassical feature persists up to macro scale for masses larger than the

typical microsopic masses, and the way quantum-classical transition occurs.
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5.3 CONCLUDING REMARKS AND FUTURE PERSPECTIVE

For multilevel spin systems, robustness of the quantum mechanical violation of macroreal-

ism (MR) with respect to coarse grained measurements is investigated using three different

necessary conditions of MR, namely, the Leggett-Garg inequality (LGI), Wigner’s form of

the Leggett-Garg inequality (WLGI) and the condition of no-signalling in time (NSIT).

It is shown that for dichotomic sharp measurements, in the asymptotic limit of spin, the

algebraic maxima of the QM violations of all these three necessary conditions of MR are at-

tained contingent upon a measurement scheme invoked in [111]. These results hold good

even when we generalise the grouping scheme. Here the clubbing of the measurement

outcomes into two groups makes the measurement coarse grained. However, the bound-

ary between the two groups of outcomes remains precise which is, in general, not true in

the realization of the macrolimit. Employing, in conjunction, unsharp measurement makes

this boundary also imprecise. Thus, simultaneously clubbing different measurement out-

comes together and invoking unsharp measurement enables to describe in a more natural

way the coarse graining of the measurements. It is, therefore, emphatically demonstrated

that classicality does not emerge for such coarse grained measurement even for arbitrarily

large spin value of the system. Considering more general form of coarse graining i. e.,

invoking biased-ness of measurement and coarsening of time is the further area of study.

Then in the other work LGI is applied in the context of a linear harmonic oscillator. Strik-

ingly, it is found that the quantum mechanical (QM) violation of LGI can reveal a testable

nonclassical feature associated with the state which is considered the most classical-like of

all quantum states, namely the Schrödinger coherent state. In the macrolimit, the extent to

which for large values of mass such nonclassicality persists is quantitatively investigated.

It is found that while for any given mass and angular frequency of oscillation, by suit-

ably choosing the initial peak momentum of the coherent state wave packet, a significant

amount of QM violation of LGI can be obtained, however, as the mass is sufficiently in-

creased, actual observability of this violation becomes increasingly difficult. A potentially

feasible experimental setup for studying our example is suggested using optically levitated

objects having mass 106 amu - 109 amu, in which the predicted QM violation of LGI can

be tested. For future study it should be mentioned that the effect of decoherence due

to coupling with dissipative environment relevant to the setup has to be carefully taken

into account in order to examine the extent to which the QM violation of LGI could be

observable for the oscillator coherent state.
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CHAPTER 6

APPLICATION OF TEMPORAL

CORRELATION

In this chapter, we propose an application of violation LGI on certifying randomness by

deriving LGI using different set of assumptions: the assumption of no signalling in time

(NSIT) and predictability. These assumptions involve only measurement statistics and

hence are directly testable in experiments. This derivation of LGI, therefore, allows us to

conclude that in a situation where NSIT is satisfied, the violation of LGI will imply viola-

tion of predictability i.e., presence of certifiable randomness. Thus LGI finds an important

practical implication in a useful information theoretic task.

This chapter based on Temporal correlations and device-independent randomness, S Mal, M

Banik, S K Choudhury, Quantum Inf Process 15, pp 2993 3004(2016) [124].

Randomness is a valuable resource for various important tasks ranging from cryptographic

applications to numerical simulations such as Monte Carlo method (a useful technique

which finds application in computational Physics, Statistical Physics, Physical Chemistry,

Computational Biology, Computer Graphics, Finance and many other areas). For various

such tasks, the genuineness of the used randomness is of primary concern. Thus, device

independent certification and generation of randomness is very important from a practical

point of view. Motivated by the work of Pironio and coworkers [125] many interesting re-

sults have been obtained, in recent times, in the field of DI certification and generation of

randomness. All such methods use nonlocal correlations among spatially separated parties

92 c©Shiladitya Mal



6.1 Ontological framework of an operational theory and the LGI

to certify randomness.

From algorithmic information theory it is known that randomness cannot be certified by

any mathematical procedure [126]. The generation of randomness, therefore, must be

based on unpredictability of some physical phenomena, so that the randomness is guaran-

teed by the inherent uncertain nature of the physical theory. There is no such thing as true

randomness in classical world as any classical phenomenon, can, in principle, be predicted.

They appear random to us due to lack of our knowledge and control of all the relevant de-

grees of freedom. Measurement on a quantum particle, on the other hand, is postulated to

give intrinsically random results. The quantum measurements, therefore, can be used to

generate true randomness [12, 13]. But, for the reliability of the randomness thus gener-

ated, one needs to trust the devices which prepare and measure the quantum states. Can

randomness be certified in a Device-Independent way, i.e., can it be certified even without

knowing the details of the devices used in its generation– is a topic of current research

interest [125, 127, 128, 129].

We derive LGI from NSIT and predictability condition. The assumption of NSIT, described

in [94, 130, 131], says that a measurement does not change the outcome statistics of a

later measurement, whereas predictability is the assumption that one can predict the out-

comes of all possible measurements to be performed on a system [132]. Then we show

how much randomness is generated by a certain amount of violation of LGI.

This work provides an important information theoretic application of LGI which can be

implemented in laboratory with the present day’s technology. From the perspective of ex-

perimental implementation the LGI-based DI randomness certification seems more feasible

than its spatial analogue as it does not require entanglement.

We begin with a brief review of the ontological framework of an operational theory, as this

will later be used in our derivation of LGI.

6.1 ONTOLOGICAL FRAMEWORK OF AN OPERATIONAL THEORY

AND THE LGI

In a standard Leggett-Garg test, we consider a macroscopic object which is described by a

set of macro variable {Q,Q′, ...}whose values are considered to be macroscopically distinct

by some measure [133]. In a series of runs, the object is prepared in the same initial state,

and each preparation defines a new origin of time. Let us consider the case where macro
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6.1 Ontological framework of an operational theory and the LGI

variable A ∈ {Q,Q′, ...} is measured at time tA(tA > 0) and macro variable B ∈ {Q,Q′, ...}
at a later time tB. The correlation function CtAtB ≡ 〈QtAQtB〉 for measurements at tA and

tB is obtained from the joint probability P (AtABtB |QtAQtB) of obtaining the results AtA
and BtB from measurements of Q at time tA and tB (tB > tA) as

CtAtB =
∑

AtABtB

AtABtBP (AtABtB |QtAQtB).

In the simplest case, the macro variable may obtain only two different values ±1. In such

cases, macrorealism together with induction imply the LGI [133] of the Clauser-Horne-

Shimony-Holt (CHSH) type [93] (t1 < t2 < t3 < t4):

fLG4 = −2 ≤ Ct1t2 + Ct2t3 + Ct3t4 − Ct1t4 ≤ 2. (6.1)

or of the Wigner type [92]

fLG3 = −3 ≤ Ct1t2 + Ct2t3 − Ct1t3 ≤ 1 (6.2)

In the ontological framework, the system’s state is described by an ontic variable λ

and P (AtA , BtB |QtA , QtBλ, λ→λ′) denotes the joint probability of obtaining outcome AtA of

measurement QtA performed at time tA and outcome BtB of measurement QtB performed

at a later time tB; λ→λ′ denotes the change of the system’s ontic state conditioned that AtA
outcome has been obtained in measurement QtA at time tA. The ontological model then

predicts for the observed probability as

P (AtABtB |QtAQtB) =

∫
λ

∫
λ′
dλdλ′µ(λ)ρ(λ′|QtA , AtA , λ)P (AtABtB |QtAQtB , λ, λ→λ′),(6.3)

where µ(λ) and ρ(λ′|QtA , AtA , λ) respectively denote the distribution of the ontic variables

prior to the measurement QtA and distribution of the ontic variables after obtaining the

result AtA in the measurement of QtA. A crucial step in the derivation of LGI is to establish

the following factorizability relation which follows from the assumptions of macrolealism
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and induction [41, 44] 1:

P (AtABtB |QtAQtB , λ, λ→λ′) = P (AtA|QtA , λ)P (BtB |QtB , λ) (6.4)

It is noteworthy that, in contrast to macrorealism, quantum mechanics predicts the

outcome probability as:

P (AtABtB |QtAQtB) = Tr[ρ̂(tA)Q̂A]Tr[ρ̂AtA (tB)Q̂B], (6.5)

where, ρ̂(tA) is the quantum state of the system at time tA, Q̂A and Q̂B are the measurement

operators for outcomes A and B, and ρ̂AtA (tB) is the quantum state at time tB given that

at time tA result A was obtained.

For a two-level system undergoing coherent oscillations between the states with Q =

±1, the optimal quantum violation of the inequality (6.1) is known to be 2
√

2, whereas it

is 3
2

for the inequality (6.2) [117].

6.2 AN ALTERNATIVE DERIVATION OF THE LEGGETT-GARG IN-

EQUALITY

We, now, state the main result of our paper in the form of the following theorem:

Theorem 1: Any operational theory satisfying the assumptions of predictability and NSIT

always satisfies LGIs.

It is known that macrorealism implies both LGI as well as NSIT. But, the assumption of

NSIT, alone, does not imply LGI [94]. However, as shown below, it together with the as-

sumption of predictability yield LGI. Before proceeding for the proof of the above theorem,

we state the two assumptions in precise mathematical forms:

(a1) NSIT: An operational model is said to satisfy no signalling in time (NSIT) if a mea-

surement does not change the outcome statistics of a later measurement. In the

context of the standard Leggett-Garg test, this assumption demands that the proba-

bility of obtaining B as measurement outcome for a measurement of an observable

Q at time tB should not depend on any measurement performed at an earlier time

1Once the factorizability is achieved, the postulate of induction is further used in calculating the cor-
relation between measurement outcomes at two other different times. It allows one to freely choose the
measurement times, independent of the properties of the initially prepared state.
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tA, i.e.,

P (BtB |QtB) = P (BtB |QtAQtB).

(a2) Predictability: A model is said to be predictable if the joint operational statistics

P (AtABtB |QtAQtB) ∈ {0, 1} for measurements at any time and for all measurement

outcomes.

To prove Theorem 1, it is sufficient to prove the following Lemma.

Lemma 1: predictability ∧ NSIT⇒ factorizability relation, i.e. Eq.(6.4).

Proof: The assumption of predictability implies:

P (AtABtB |QtAQtB) ∈ {0, 1}, (6.6)

for measurements at any time and for all measurement outcomes. As

P (BtB |QtAQtB) =
∑
AtA

P (AtABtB |QtAQtB) (6.7)

and as all the joint probabilities appearing in the summation above can be either zero or

one in a predictable model, hence,

P (BtB |QtAQtB) ∈ {0, 1} (6.8)

i.e., measurement outcome at time tB does not depend on measurement outcome at earlier

time tA. According to Baye’s theorem

P (AtABtB |QtAQtB) = P (BtB |AtAQtAQtB)P (AtA|QtAQtB). (6.9)

Using the Eq.(6.8) in Eq.(6.9) we get,

P (AtABtB |QtAQtB) = P (BtB |QtAQtB)P (AtA|QtAQtB). (6.10)

Assuming NSIT, we get,

P (BtB |QtAQtB) = P (BtB |QtB). (6.11)
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Due to Induction, which says that measurement statistics at an earlier time should not

depend on what would be measured at a later time, we also have.

P (AtB |QtAQtB) = P (AtB |QtA). (6.12)

From Eqs.(6.10), (6.11), and (6.12) finally we get

P (AtABtB |QtAQtB) = P (BtB |QtA)P (AtA|QtA). (6.13)

As the assumption of predictability implies joint operational statistics are deterministic,

hence, P (AtABtB |QtAQtB , λ, λ → λ′) = P (AtABtB |QtAQtB). Therefore the factorizability

condition (i.e. Eq.(6.4)) follows from conditioning the probabilities in the RHS of the

above equation on λ.

The above derivation of LGI implies that either both or at least one of the underlying

assumptions is violated whenever LGI is violated. Thus, as a corollary of Theorem 1 we

can say,

Corollary: ¬ LGI ∧ NSIT⇒ ¬ predictability.

Imagine now a situation where LGI is violated but NSIT is satisfied. It would be worth

mentioning here that NSIT is experimentally testable. In such situations, we can say that

the model cannot be predictable. Using the said situation, in the following, we show that

temporal correlations are useful for DI randomness certification.

6.3 LGI AND DEVICE-INDEPENDENT RANDOMNESS

In device independent scenario, one does not have detailed knowledge about the experi-

mental apparatuses and hence the experimental setup is like a black-box with inputs and

outputs. At the input probe, one can change the parameters of measurement setup and

thus can choose different measurements. Measurements are performed at different in-

stants of time on the system and the frequencies P (AtABtB |QtAQtB) ∈ [0, 1] of occurrence

of a given pair of outcomes for each pair of different time measurements are collected at

the output probe either by repeating the experiment many times or by employing an array

of many identical systems. The other joint probabilities involved in Leggett-Garg inequal-

ities (6.1) or (6.2) are calculated likewise to observe their violations. These probabilities

are also analyzed to see whether NSIT is obeyed. Note that, NSIT is defined operationally
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6.3 LGI and device-independent randomness

FIG. 6.1: (Color on-line) Certifiable randomness associated with Leggett-Gerg function fLG4 =
fMR

4 + ε. Randomness is achieved for non zero value of ε.

and it is the statistical version of non-invasive measurability. Hence, it can be tested from

data collected in an input output experiment. In fact, in the appendix of Ref. [94], an ex-

plicit scenario involving the Mach-Zehnder interferometer has been presented where LGI

is violated but NSIT is satisfied. As we now know that such distribution cannot be pre-

dictable and therefore some randomness is associated with it. The associated randomness

can be quantified by min-entropy [134] which is a statistical measure of the amount of

randomness that a particular distribution contains. For a distribution X, it is defined as

H∞(X) ≡ log2

1

max
x:Prob(X=x)

Prob(X = x)

Thus, to obtain the minimum amount of randomness associated with the violations of LGI

(represented by fLGδ = fMR
δ + ε, where fMR

δ is the macrorealistic bound of fLGδ ; δ = 3

for inequality (6.2) and for (6.1) δ = 4; ε > 0), we need to first solve the following

optimization problem:

PNSIT (Qtα , Qtβ) = max
i,j

P (Qtα = i, Qtβ = j)

subject to fLGδ = fMR
δ + ε

P (Qtα = i, Qtβ = j) ≥ 0∑
i,j

P (Qtα = i, Qtβ = j) = 1

P (QTα , QTβ) satisfy NSIT. (6.14)

Having the optimized solution P ∗NSIT (Qtα , Qtβ), the minimum randomness is calculated

as H∞(QTα , QTβ) = − log2 P
∗
NSIT (Qtα , Qtβ). We have considered the Leggett-Gerg function

fLG4 and fLG3 , one after another, in the optimization problem (6.14) and have numeri-
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FIG. 6.2: (Color on-line) Certifiable randomness associated with Leggett-Gerg function fLG3 .

cally calculated the minimum amounts of randomness with different values of ε. We plot

our findings in Fig.6.1 and Fig.6.2 1. The curve in Fig.6.1 corresponds to the minimal

value of the min-entropy implied by the assumption of NSIT. The function fLG4 is zero at

the macrorealistic threshold value fLG4 = 2. Temporal correlations that violate the LGI

inequality (6.1), on the other hand, have a positive min-entropy. Fig.6.2 represents the

minimal value of the min-entropy for the violation of LGI inequality (6.2).

6.4 CONCLUDING REMARKS AND FUTURE PERSPECTIVE

In this work, we have shown that temporal correlations which violate Leggett-Gerg in-

equality, can also be used to certify randomness. It would be worth mentioning here that

like Bell’s scenario, in the case of temporal correlations too, we need some amount of seed

randomness at the input. This is needed for freely choosing the measurement times. From

the perspective of experimental implementation the LGI-based DI randomness certification

seems more feasible than its spatial analogue as it does not require entanglement.

Bell inequality violation in quantum mechanics is always bounded by Cirelson bound (i.e.

2
√

2) [34]. On the other hand the optimal violation of inequality (6.2) is 3
2

for a qubit sys-

tem, which remains the same irrespective of the system size for dichotomic measurements.

In a recent development, it has been shown that the optimal violation of inequality (6.2)

can go beyond 3/2 for higher dimensional system (for system dimension→ ∞ violation

of inequality (6.2) reaches its algebraic maximum) if non degenerate type of projective

measurements are considered [39]. The study of ‘randomness certification’ from temporal

correlation in this new scenario is a subject matter of further research.
1For the Leggett-Garg function fLG4 , the associated randomness can also be obtained in a closed form

as H∞(QTα , QTβ
) ≥ − log2(

3
2 −

2+ε
4 ) (cf. Fig.1). The calculation is similar to Ref.[125], but the context is

different here. While in [125], correlations between measurement results from two distantly located physical
systems are considered, here the focus is on one and the same physical system to obtain the correlations
between measurement outcomes at two different times.
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